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Motivation

Context
Fanosearch Project: study Fano varieties using Mirror Symmetry.
[Coates, Corti, Galkin, Golyshev, Kasprzyk (arXiv:1212.1722)]

I Two sides of the mirror:{
some Laurent
polynomials

}/
{mutations}⇔

{
Fano

varieties

}/
{deformations}

I Laurent polynomials are simpler than Fano manifolds.



Motivation

Definition
Fix a lattice N ≡ Zd .
A canonical Fano polytope P ⊂ N is a convex lattice polytope
such that:

I the vertices V(P) are integral lattice points.

I The only lattice point in P̊ is the origin of the lattice.

I dim(P) = d .

A special case

I If the polar polytope P∗ is itself an integral lattice polytope,
we call P reflexive.



Motivation

“Interesting” Laurent polynomials f :

I Given a canonical Fano polytope P,

Newt f = P, f =
∑

γ∈N∩P
aγxγ

Definition
Given a vector w ∈ Hom (N,Z), and u ∈ C[w⊥], a mutation
Φ : C[N]→ C[N] defined by:

Φ : xγ 7→ xγu〈w ,γ〉.

Φ : f 7→
∑

γ∈N∩P
aγxγu〈w ,γ〉.

Φf ∈ C[N] might constrain some aγ .

Akhtar, Coates, Galkin, Kasprzyk [arXiv:1212.1785]



Motivation

Definition (Kasprzyk, Tveiten)

Let P be a canonical Fano polytope.
Consider

f =
∑

γ∈N∩P
aγxγ

such that there exist Φ1, . . . ,Φr such that

Φi f ∈ C[N] for i = 1, . . . , r

fixes uniquely all values of aγ , γ ∈ ∂P \ V(P),

then we call f a (rigid) Maximally Mutable Laurent polynomial.

I if γ ∈ V(P), then aγ = 1.

I If γ = (0, . . . , 0), then aγ = 0.

Akhtar, Coates, Galkin, Kasprzyk [arXiv:1212.1785]



Motivation

Definition
Given a Laurent polynomial f ∈ C[x±11 , . . . , x±1n ], the period of f
is:

πf (t) =
1

(2πi)n

∫
|x1|=1,··· ,|xn|=1

1

1− tf (x1, . . . , xn)

dx1
x1
· · · dxn

xn
, t ∈ C, |t| � ∞.

Moreover, if f is mirror to a Fano manifold,

πf (t) =
∑
k≥0

cktk ck ∈ Z, for all k .

The sequence (c0, c1, . . . ) is called the period sequence of f .

ck = coeff1 f k .

[Akhtar, Coates, Galkin, Kasprzyk (arXiv:1212.1785)]



Motivation

example

1

1

0 1

f = x + y +
1

xy

πf (t) = 1 + 6t3 + 90t6 + 1680t9 + 34650t12 + 756756t15 + . . .



Motivation

example

1

1

0

a 1

f = y +
1

xy

(
x2 + ax + 1

)
f is Maximally Mutable iff a = 2, and we have:

f = y +
1

xy
(x + 1)2 .

πf (t) = 1 + 4t2 + 36t4 + 400t6 + 4900t8 + 63504t10 + . . .



Motivation
If dim P > 2, P may have more than one MM Laurent polynomials.

example

f= 1
z
+z

(
(x+1)2

xy
+ x2+2x+1

x
+y

)
g= 1

z
+z

(
(x+1)2

xy
+ x2+3x+1

x
+y

)

(left) πf (t) = 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + . . .

(right) πg (t) = 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + . . .



Computational aspects

Use case
Given a class of polytopes U , for all P ∈ U :

I find all Maximally-Mutable polynomials supported on P.

I Make a list of the period sequences.

I Compute other interesting quantities.

U can be very large

3-reflexives 3-canonicals 4-reflexives

4 319 674 688 473 800 776

Performance Requirements

I Ideally, as many cores as polytopes in U .

I High single-core performance.

I High disk read/write rate.



Computational aspects

IO infrastructure
I Text/binary file dump.

• As simple as possible.
• Naturally concurrent.
• Slow postprocessing.

I SQLite database.

• High quality, simple to use SQL database.
• Not designed for concurrency.

I Dedicated database server.

• High performance, high concurrency.
• Flexible data structures, SQL (Postgres, CockroachDB) or

JSON (Mongo).
• Non negligible set up and maintenance cost.
• The HPC-database interface is of fundamental importance.

Our solution: in-house tooling for workers/database interaction
[Coates, Kasprzyk (https://bitbucket.org/pcas)]

https://bitbucket.org/pcas


Example: canonical Fano 3-topes

Canonical Fano polytopes in 3 dimensions were classified by
Kasprzyk [arXiv:0806.2604].
Up to GL(Z, 3)-equivalence, there are 674 688 canonical Fano
3-topes.
Target For each canonical Fano 3-tope P:

1. find all Maximally Mutable polynomials f supported on P.

2. For every such f , compute the period sequence.

3. Can we analise and understand this data?



Example: code metrics

The Maximally Mutables code is quite complex

The most demanding computational tasks include:

I Minkowski decompositions.

I Gröbner basis computations.

I Graph search algorithm.

I Several performance tricks.

Performance analysis and optimisation

I Code profiling (development).

I Runtime metrics (deployment).



Example: code metrics

Random sample of 10 000 polytopes.



Example: canonical Fano 3-topes

As of today, the search is 99.8% complete.
We found ∼ 170 000 Maximally Mutable Laurent polynomials.
These polynomials originate ∼ 8 200 period sequences.

I We can leverage the wealth of open source libraries for Data
Science.

I Example: basic analysis of the period sequence data.

I Tools: pandas and scikit-learn libraries for python.



Example: canonical Fano 3-topes

Data Analysis

Difficulties in dealing with period sequences data:

I the coefficients of the period sequences grow quickly.
↪→ Work instead with log ck , then rescale so that

log ck ∈ [−1, 1]

I The data is high-dimensional (in this computation, each
datapoint is in Z14 ([−1, 1]14 after rescaling).
↪→ Principal Component Analysis: project to linear subspaces

that explain most of the variance in the data.

I Beware of low-dimensional projections of high-dimensional
data.



Example: canonical Fano 3-topes

Low-dimensional projection

Every point represents a period sequence.
Period sequences of smooth manifolds are in red.



Example: canonical Fano 3-topes

Low-dimensional projection

Every point represents a period sequence.
Anticanonical degree.



Example: canonical Fano 3-topes

Low-dimensional projection

Every point represents a period sequence.
Gorenstein index (log scale).



Perspectives

Opportunities and challenges ahead

I Databases are evolving quickly.

↪→ Automatic sharding (CockroachDB).
↪→ Optimised performance for SSDs.
↪→ Memory caches (e.g. Redis).

I Data analysis on ∼ 1 Tb.


