Universes as Bigdata,

from String Theory to Modern Geometry to Machine-Learning

YANG-HUI HE

Dept of Mathematics, City, University of London Merton College, University of Oxford School of Physics, NanKai University

International Congress of Mathematical Software 2020 Braunschweig July, 2020

(日)

The Geometrization Programme

- Algebraic/differential geometry/topology : the right language for physics
 - $\bullet\,$ Gravity \sim Ricci 2-form of the Tangent bundles;
 - Elementary Particles \sim irreducible representations of the Lorentz group and sections of bundles with Lie structure group;
 - $\bullet\,$ Interactions $\sim\,$ Tensor products of sections \ldots
 - String theory: brain-child of gauge-gravity geometrization tradition
- A new exciting era for synergy with (pure & computational) geometry, group theory, combinatorics, number theory: *Sage*, *M2*, *GAP*, *LMFDB*, *GrDB* are becoming indispensible tools for physicists
- Interdisciplinary enterprise: cross-fertilisation of particle/string theory, phenomenology, pure mathematics, computer algorithms, data-bases, ...

< □ > < □ > < □ > < □ > < □ >

$10 = 4 + 3 \times 2$

Triadophilia: 1984/5

- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1985
 - Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_8 \times E_8$ or SO(32), 1984 6
 - E₈ accommodates Standard Model of particle physics

 $SU(3) \times SU(2) \times U(1) \subset SU(5) \subset SO(10) \subset E_6 \subset E_8$

- 6 extra dimensions is some 6-dimensional manifold \boldsymbol{X}
 - Inot just a real 6-manifold but a complex 3-fold X
 - 2 X is furthermore Kähler $(g_{\alpha\bar{\beta}} = \partial_{\alpha}\bar{\partial}_{\bar{\beta}}K)$
 - 3 X is Ricci flat (vacuum Einstein equations)
 - Rmk: there are other classes of solutions (more later...) but 1,2,3 simplest
- What are such manifolds? Just so happens that Yau and Strominger were neighbours at IAS in 1985

イロト イヨト イヨト イヨ

Calabi-Yau

• Generalize the trichotomy for complex dim 1 (Riemann surfaces):

$g(\Sigma) = 0$	$g(\Sigma) = 1$	$g(\Sigma) > 1$
$\chi(\Sigma)=2$	$\chi(\Sigma) = 0$	$\chi(\Sigma) < 0$
Spherical, + curvature	Ricci-Flat, 0 curvature	Hyperbolic, – curvature

- HARD for dim $_{\mathbb{C}} > 1$, luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler (g, ω) and $([R] = [c_1(M)])_{H^{1,1}(M)} \cdot \exists ! (\tilde{g}, \tilde{\omega}) \text{ s.t. } ([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})} \& Ricci(\tilde{\omega}) = R.$

Rmk: $c_1(M) = 0 \Leftrightarrow \text{Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)}$

- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (term coined by physicists)

イロト イロト イヨト イヨト

Calabi-Yau

• Generalize the trichotomy for complex dim 1 (Riemann surfaces):

$g(\Sigma) = 0$	$g(\Sigma) = 1$	$g(\Sigma) > 1$
$\chi(\Sigma)=2$	$\chi(\Sigma) = 0$	$\chi(\Sigma) < 0$
Spherical, + curvature	Ricci-Flat, 0 curvature	Hyperbolic, – curvature

- HARD for dim $_{\mathbb{C}} > 1$, luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler (g, ω) and $([R] = [c_1(M)])_{H^{1,1}(M)} \cdot \exists ! (\tilde{g}, \tilde{\omega}) \text{ s.t. } ([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})} \& Ricci(\tilde{\omega}) = R.$

Rmk: $c_1(M) = 0 \Leftrightarrow \text{Ricci-flat} (\text{rmk: Ricci-flat familiar in GR long before strings})$

- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (term coined by physicists)

イロト イ団ト イヨト イヨト

Calabi-Yau

• Generalize the trichotomy for complex dim 1 (Riemann surfaces):

$g(\Sigma) = 0$	$g(\Sigma) = 1$	$g(\Sigma) > 1$
$\chi(\Sigma)=2$	$\chi(\Sigma) = 0$	$\chi(\Sigma) < 0$
Spherical, + curvature	Ricci-Flat, 0 curvature	Hyperbolic, – curvature

- HARD for dim $_{\mathbb{C}} > 1$, luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler (g, ω) and $([R] = [c_1(M)])_{H^{1,1}(M)} \cdot \exists ! (\tilde{g}, \tilde{\omega}) \text{ s.t. } ([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})} \& Ricci(\tilde{\omega}) = R.$

Rmk: $c_1(M) = 0 \Leftrightarrow \text{Ricci-flat} (\text{rmk: Ricci-flat familiar in GR long before strings})$

- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (term coined by physicists)

• • = • • =

Calabi-Yau Manifolds as Algebraic Varieties

- THM: Homog deg n + 1 in \mathbb{P}^n , is Calabi-Yau dim_{\mathbb{C}} = n 1 (adjunction)
- dim_C = 1: T² as cubic (elliptic curve) in ℙ²;
 dim_C = 2: K3 surface as quartic in ℙ³
- CY3, immediately get 5 (cyclics): Degree 5 in \mathbb{P}^4 (The Quintic Q), [3,3] in \mathbb{P}^5 , [2,4] in \mathbb{P}^5 , [2,2,3] in \mathbb{P}^6 , [2,2,2,2] in \mathbb{P}^7
- First physics challenge to algebraic geometry:
 - Particle Spectrum: Generation : $n_{27} = h^1(X, TX) = h^{2,1}_{\overline{\partial}}(X)$; Anti-Generation : $n_{\overline{27}} = h^1(X, TX^*) = h^{1,1}_{\overline{\partial}}(X)$
 - # generations of particles = $\chi = 2(h^{1,1} h^{2,1})$; 1986 Question: Are there Calabi-Yau threefolds with Euler number ±6? (None of our 5 obvious ones)

イロト イヨト イヨト

The First Data-sets in Mathematical Physics/Geometry

- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
 - CICYs (complete intersection CYs) multi-deg polys in products of \mathbb{CP}^{n_i}
 - Problem: *classify all configuration matrices*; employed the best computers at the time (**CERN supercomputer**); q.v. magnetic tape and dot-matrix printout in Philip's office
 - 7890 matrices, 266 Hodge pairs $(h^{1,1}, h^{2,1})$, 70 Euler $\chi \in [-200, 0]$
- [Candelas-Lynker-Schimmrigk, 1990]
 - Hypersurfaces in Weighted P4
 - 7555 inequivalent 5-vectors w_i , 2780 Hodge pairs, $\chi \in [-960, 960]$
- [Kreuzer-Skarke, mid-1990s 2000]
 - Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds
 - 6-month running time on dual Pentium SGI machine
 - at least 473,800,776, with 30,108 distinct Hodge pairs, $\chi \in [-960,960]$

Exact Standard Model Particle Content from String Compactification

- [Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM
- [Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift
- Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM Stable Sum of Line Bundles

over CICYs (Oxford-Penn-Virginia 2012-)

A Special Corner?

[New Scientist, 5/1/2008 feature]

Candelas-de la Ossa-YHH-Szendroi

"Triadophilia: A Special Corner of the Land-

(日) (同) (三) (三) (三)

scape" ATMP, 2008

The Good Last 10-15 years: several international groups have bitten the bullet Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, ..., computed many geometrical/physical quantities and compiled them into various databases Landscape Data ($10^{9\sim10}$ entries typically) (integration of the second The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential) ...e.g., how to construct stable bundles over the $\gg 473$ million KS CY3? Sifting through for SM computationally impossible

The ??? Borrow new techniques from "Big Data" revolution

イロト イヨト イヨト イヨト

A Wild Question

• Typical Problem in String Theory/Algebraic Geometry:

- Q: Can problems in computational geometry and theoretical physics be "learned" by AI ? implications:
 - can we "machine-learn the landscape?"
 - can we do mathematics with ML?
- [YHH 1706.02714] Deep-Learning the Landscape, Phys Lett B 774, 2017

Science feature article, Aug, vol 365 issue 6452 :

Experimentally, it seems to be the case for many situations in geometry and

beyond. (cf. YHH CY Landscape: from Geometry, to Physics, to ML

1812.02893, Springer Textbook, to appear)

イロト イヨト イヨト イヨ

NN Doesn't Care/Know about Algebraic Geometry

Hodge Number of a Complete Intersection CY is the association rule, e.g.

$$X = \begin{pmatrix} \begin{smallmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \qquad h^{1,1}(X) = 8 \quad \rightsquigarrow$$

$$\rightarrow 8$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CICY is 12×15 integer matrix with entries $\in [0,5]$ is simply represented as a 12×15 pixel image of 6 colours (proper way: sequence chasing) Proper Way

- Cross-Validation: $\begin{cases} \text{ Take samples of } X \to h^{1,1} \\ \text{ train a NN, or SVM} \\ \text{ Validation on } unseen \ X \to h^{1,1} \end{cases}$

Experiments ((precision, confidence) @ 80-20 cross-val)

- YHH (1706.02714) Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113): Hodge numbers of CICYs, (0.85, 0.9);
- YHH-SJ Lee (1904.08530): Distinguish Elliptic Fibrations (0.99, 0.99);
- Ashmore-YHH-Ovrut (1910.08605): ML Donaldson algorithm for (balanced) CY metric $\sim 10^2$ speedup;
- YHH-MY Kim (1905.02263): Use GAP database, recognizing simple groups: (0.96, 0.95) distinguishing Cayley tables from Latin squares (0.9, 0.9)
- Bao-Franco-YHH-Hirst-Musiker-Xiao (2006.10783): Recognize cluster mutations $(0.9, 0, 8) \rightarrow (1.0, 1.0)$
- YHH-ST Yau (2006.16619): Finite graphs, recognizing acyclic, Ricci-flat, planarity, etc: $(0.8, 0.7) \rightarrow (0.95, 0.91)$ Reprodutes

Summary and Outlook

PHYSICS • The string landscape now solidly resides in the age of Big Data

- Use Machine-Learning as Classifier & Predictor
- MATHS somewhat bypassing the expensive steps of long sequence-chasing, Gröbner bases, dual cones/combinatorics and getting the right answer @ high rate (only probabilistically doing NP-Hard); 100% ~> new conjectures/formulae/algorithms;
 - Hierarchy of Difficulty ML struggles with:

numerical < algebraic geometry over $\mathbb{C} <$ combinatorics/algebra < number theory

イロト イヨト イヨト イヨ

- CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys. physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html
- Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/CY/
 - new PALP: Braun-Walliser: ArXiv 1106.4529
 - Triangulations: Altmann-YHH-Jejjala-Nelson:
 - http://www.rossealtman.com/
- cf. Graded Rings: Brown, Kasprzyk, et al. http://www.grdb.co.uk/

Return

< □ > < 同 > < 回 > < Ξ > < Ξ

Computing Hodge Numbers: Sketch

• Recall Hodge decomposition $H^{p,q}(X) \simeq H^q(X, \wedge^p T^\star X) \leadsto$

 $H^{1,1}(X) = H^1(X, T_X^*), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^*) \simeq H^1(X, T_X)$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

• Need to compute Rk(d), cohomology and $H^i(X, T_A|_X)$ (Cf. Hübsch)

YANG-HUI HE (London/Tianjin/Oxford)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Expect anything involving properties of primes to do badly:

- YHH (1706.02714): predicting primes (0.5, 0.0) (completely random) ...
- Alessandretti-Baronchelli-YHH (1911.02008) BSD using LMFdb: rank from Weierstrass coef, random; correlation @ BSD quantities, marginally better at least for standard classifers (boosted trees, SVMs, ...) and simple NN which does algebraic geometry so well:

