Imposing planes on 3-folds

Gavin Brown (Kent)
Joint work with
M.Kerber (Saarbrücken), M.Reid (Warwick)

General themes

Classification in projective algebraic geometry (equiv: in finitely-generated graded rings).

Seek families of graded rings with particular properties.

Complicated families can be inferred from the existence of special elements in easy families.

- What is 'imposing a plane’?
- Line in cubic surface: conic fibrations
- Plane in quartic 3-fold: cubic surface fib'ns
- Magma analysis of Pfaffian equations.

Part I: Lines on cubic surfaces

The family of cubic surfaces is

$$
S_{3}:\left(f_{3}=0\right) \subset \mathbb{P}^{3}
$$

as $f_{3}=f_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ varies through homogeneous forms of degree 3 (for which $\left(f_{3}=0\right)$ is nonsingular).

Fix a line $\mathbb{P}^{1} \cong L=\left(x_{0}=x_{1}=0\right) \subset \mathbb{P}^{3}$.

Imposing L means considering the subfamily of the form

$$
L \subset S_{3}=\left(x_{0} f-x_{1} g=0\right) \subset \mathbb{P}^{3}
$$

for homogenous quadrics f, g (for which ...).

Such S is nonsingular along L iff

$$
\nabla_{\mid L}=(f,-g, 0,0) \quad \text { is never zero. }
$$

So Bertini $\Longrightarrow \exists$ such nonsing cubic surfaces.

What good is a line?

Special surfaces have special structures:

$$
L \subset S_{3}=\left(x_{0} f-x_{1} g=0\right) \subset \mathbb{P}^{3}
$$

(a) conic fibration given by the map

$$
\left(x_{2}: x_{3}\right): S_{3} \longrightarrow \mathbb{P}^{1} .
$$

(c.f. Cremona's talk last year on conic fibrations and Tsen's theorem.)
(b) new birational model by contracting L : set $\quad s=f / x_{1}=g / x_{0} \quad$ to get a new surface

$$
T:\left(x_{1} s=f, x_{0} s=g\right) \subset \mathbb{P}^{4} .
$$

(a) is a structure theorem for S; (b) builds a more complicated surface out of $L \subset S$:

$$
\mathbb{P}^{4} \supset T \quad \longleftarrow \quad S \quad \longrightarrow \quad \mathbb{P}^{1}
$$

Planes on quartic 3-folds

Consider imposing a plane as

$$
\begin{aligned}
\mathbb{P}^{2} \cong E & =\left(x_{0}=x_{1}=0\right) \\
& \subset X_{4}=\left(x_{0} f_{3}-x_{1} g_{3}=0\right) \subset \mathbb{P}^{4}
\end{aligned}
$$

Such X is nonsingular along E iff

$$
\nabla_{\mid E}=(f,-g, 0,0) \quad \text { is never zero. }
$$

But Bézout \Longrightarrow vanishing at 9 points.

In general, these sings are nodes: $x y=z t$. (Thinks: local non-unique factorisation in X.)

So Bertini $\Longrightarrow \exists X \supset E$ with nodes on E.

What good is a plane?

New constructions and/or structure theorems:

$$
\mathbb{P}^{5}\left(1^{5}, 2\right) \supset Y_{3,3} \quad \leftrightarrow \quad X_{4} \quad \cdots \quad \mathbb{P}^{1}
$$

where the fibration is by cubic surfaces.

Part II: Making Fano 3-folds

I am interested in building new Fano 3-folds. (Dan Ryder's talk is on the structure theorems. Stephen Coughlan's talk is on the commutative algebra behind the calculations.)

A Fano 3-fold is X s.t. anticanonical divisor $-K_{X}$ is ample (+ conditions on singularities).

In practice $X \subset \mathbb{P}^{N}$ is Fano when it is defined by few equations of small degree*.

Idea: construct complicated Y by finding simple $X \supset E$. (e.g. with fewer variables)

Target: make a $Y \subset \mathbb{P}^{7}$ from $\mathbb{P}^{2} \subset X \subset \mathbb{P}^{6}$.
The method is to make a new variable s having a pole along E. Conversely, given Y, recover X by eliminating the new variable s.

Difficulty: control the singularities of X.

[^0]
The Magma graded ring webpage

There is a super-classification of possible Fano 3 -folds on the graded ring webpage at
www.kent.ac.uk/ims/grdb/

It includes

$$
Y_{3,3,4,4,4,5,5,5,6} \subset \mathbb{P}^{7}(1,1,1,1,1,2,3,4)
$$

(The 8 variables have weights $1,1, \ldots, 4$ and Y is defined by 9 eqns of indicated hgs degs.) The task is to show that such a Fano exists.

The webpage indicates that eliminating the weight 4 variable gives

$$
\mathbb{P}^{2}(1,1,3) \subset X_{3,3,4,4,4} \subset \mathbb{P}^{6}(1,1,1,1,1,2,3)
$$

I cannot write down equations for Y, but using Magma I can try to do it for X.

Part III: Analysing Pfaffians

A 3 -fold $X \subset \mathbb{P}^{6}$ might be defined by 3 equations. But in this case, it is defined by 5 equations, the maximal Pfaffians of a skew 5×5 matrix. It has 10 indep entries

$$
(: \vdots)
$$

(with Os on diagonal, and skew-symm).
The Pfaffians are expressions like

$$
m_{12} m_{34}-m_{13} m_{24}+m_{14} m_{23}
$$

and similarly for $12.35,12.45$, etc.

In our case, the 10 entries have hgs degs

$$
\left(\begin{array}{llll}
3 & 2 & 2 & 2 \\
& 2 & 2 & 2 \\
& & 1 & 1 \\
& & & \\
& & & 1
\end{array}\right)
$$

Putting general forms of these degs gives a nice Fano 3-fold X but without $E \subset X$.

Imposing a plane

There are two known formats for imposing a plane $E \subset X$: codenames Tom \& Jerry*.

Tom : $\left(\begin{array}{llll}\bullet & \bullet & \bullet & \bullet \\ \hdashline \bullet & \bullet & \bullet \\ & \bullet & \bullet\end{array}\right) \quad \begin{aligned} & \text { entries } \\ & \text { must lie in } I_{E}\end{aligned}$

entries to right of line must lie in I_{E}

If you do either of these (or something symm), then the Pfaffians will define an X cont'g E.

There are then formulas, due to Papadakis, for writing down the Y. (Or use Coughlan's method following Kustin-Miller.)
*I hope somebody has a better idea one day.

Michael Kerber's method

$\operatorname{Fix} \mathbb{P}^{2}=E \subset \mathbb{P}^{6}$.

For all possible T \& J configs in the matrix.

Repeat 20 times: fill in with fairly general poly ring entries according to the config and compute Pfaffians.

All eqns taken together determine locus where Bertini-like theorems cannot apply.

Analyse this 'base locus' separately.

In a general example, analyse sings on $E \subset X$ separately.

This happens every time you click Type I unprojection on the webpage.

The theorem proved by Magma

116 of 145 codim 4 Fanos $Y \subset \mathbb{P}^{7}$ on the webpage have a Type I projection.

Tom and Jerry lead to different Y.

In every case there are 5 configs for Tom and 10 configs for Jerry.

Kerber + Magma prove that each of the 116 cases has at least one Tom and at least one Jerry subfamily. A little more work gives:

Theorem/Conjecture

For fixed Riemann-Roch data (+ ...), the Hilbert scheme (which parametrises ideals in the given variables with the given Hilbert poly invariants) always has at least two components that parametrise ideals of Fano 3-folds.

[^0]: *But writing them at random usually generates rubbish when $N \geq 6$

