The number field sieve in the medium prime case

Frederik Vercauteren
ESAT/COSIC - K.U. Leuven

Magma Conference Berlin

Joint work with Antoine Joux, Reynald Lercier, Nigel Smart

Classical number fi eld sieve for \mathbb{F}_{p}

Our variations for $\mathbb{F}_{p^{n}}$ with $n>1$

Implementation example

Heuristic complexity

Number field sieve

- Index calculus algorithm used for factoring, then DLOGs
- Let $q=p^{n}$ with p prime, then complexity expressed by

$$
L_{q}(\alpha, c)=\exp \left((c+o(1))(\log q)^{\alpha}(\log \log q)^{1-\alpha}\right)
$$

- Large p : number fi eld sieve with running time

$$
L_{q}\left(1 / 3,(64 / 9)^{1 / 3}\right)
$$

as long as $\log p>n^{2+\varepsilon}$

- Small p : function fi eld sieve with running time

$$
L_{q}\left(1 / 3,(32 / 9)^{1 / 3}\right)
$$

as long as $p \leq n^{o(\sqrt{n})}$

- In the gap, i.e. $\log p<n^{2+\varepsilon}$ and $p>n^{o(\sqrt{n})}$, have to resort to Adleman - DeMarrais with complexity $L_{q}(1 / 2)$

Classical number field sieve for \mathbb{F}_{p} : setup

- To compute discrete logarithms in \mathbb{F}_{p}^{*}
- Two number fi elds $K_{1}=\mathbb{Q}$ and $K_{2}=\mathbb{Q}[X] /(f(X))$ with:
- The degree of f is $d \simeq 3^{1 / 3}\left(\frac{\log p}{\log \log p}\right)^{1 / 3}$
- Exists $m \in \mathbb{Z}$ with $f(m) \equiv 0 \bmod p$, i.e. ring homomorphism

$$
\phi_{2}: \mathcal{O}_{2} \rightarrow \mathbb{F}_{p}
$$

- E.g. f can be obtained by base $m \simeq p^{1 / d}$ expansion of p
- Choose two factor bases \mathcal{F}_{1} and \mathcal{F}_{2}
- \mathcal{F}_{1} : integer primes $p<B$ for some bound B
- \mathcal{F}_{2} : degree 1 prime ideals of norm $<B$

Classical number field sieve for \mathbb{F}_{p} : sieving

- Sieve over pairs of integers (a, b) with
- $\operatorname{gcd}(a, b)=1$ and $|a|,|b|<S$ for some bound S
- $a-b m$ is B-smooth
- $\operatorname{No}\left(a-\theta_{2} b\right)$ is B-smooth with $f\left(\theta_{2}\right)=0$ and

$$
\operatorname{No}\left(a-\theta_{2} b\right)=b^{d} f\left(\frac{a}{b}\right)
$$

- Since $\operatorname{No}\left(a-\theta_{2} b\right)$ is B-smooth the ideal $\left\langle a-\theta_{2} b\right\rangle$ factors over \mathcal{F}_{2} since only degree 1 (or index divisors) appear

$$
\left\langle a-\theta_{2} b\right\rangle=\prod_{i} \mathfrak{p}_{i}^{e_{i}}
$$

Classical number field sieve for \mathbb{F}_{p} : relations

- (a, b) with $a-b m$ and $a-\theta_{2} b B$-smooth gives relation
- Need to get rid of ideals and work with elements only ...
- Simplicity: assume class number $h(K)=1$ and computable unit group, then

$$
\boldsymbol{a}-\theta_{2} \boldsymbol{b}=\prod_{i=0}^{r} u_{i}^{\lambda_{i}} \prod_{i} \gamma_{i}^{e_{i}}
$$

with u_{1}, \ldots, u_{r} fundamental units and $\mathfrak{p}_{i}=\left\langle\gamma_{i}\right\rangle$

- Finally, by using ϕ_{2} from \mathcal{O}_{2} to \mathbb{F}_{p}^{*} obtain

$$
a-b m \equiv \prod_{j} p_{j}^{e_{j}} \equiv \prod_{i=0}^{r} \phi_{2}\left(u_{i}\right)^{\lambda_{i}} \prod_{i} \phi_{2}\left(\gamma_{i}\right)^{e_{i}} \bmod p
$$

Classical number field sieve for \mathbb{F}_{p} : relations

- Take logs of both sides, obtain relation between DLOGs

$$
\sum_{j} e_{j} \log _{g} p_{j} \equiv \sum_{i=0}^{r} \lambda_{i} \log _{g} \phi_{2}\left(u_{i}\right)+\sum_{i} e_{i} \log _{g} \phi_{2}\left(\gamma_{i}\right) \bmod (p-1)
$$

- Need to collect $\# \mathcal{F}_{1}+\# \mathcal{F}_{2}+d+\varepsilon$ relations
- Solve sparse linear system using Lanczos or Wiedemann
- Individual DLOGs: descent procedure (see more later)

Schirokauer's extension for $n>1$

- Number fi eld K_{F} is chosen such that $\mathcal{O}_{1} / p \mathcal{O}_{1} \cong \mathbb{F}_{q}$, so K_{1} has degree at least n
- Number fi eld K_{1} is extension of K_{1}, i.e. $K_{2}=K_{1}[X] /(f(X))$
- Collect pairs $(a, b) \in \mathcal{O}_{1} \times \mathcal{O}_{1}$ with similar properties as before:
- a-bm is B-smooth where $m \in \mathcal{O}_{1}$ such that $f(m) \in p \mathcal{O}_{1}$
- $a-\theta_{2} b$ is B-smooth with $f\left(\theta_{2}\right)=0$
- Leads to $L_{q}(1 / 3)$-algorithm for fi xed n and $p \rightarrow \infty$
- Main disadvantage: not really practical (only $n=2$ has been attempted by Weber)
- Choice of polynomial f depends on input DLOG problem

Basic variation $p=L_{p^{n}}(2 / 3, c)$: setup

- Finite fi elds $\mathbb{F}_{p^{n}}$ with $p=L_{p^{n}}(2 / 3, c)$ and c near $2 \cdot(1 / 3)^{1 / 3}$
- Choose polynomial f_{1} of degree n
- irreducible over \mathbb{F}_{p}
- very small coeffi cients (e.g. use poly to defi ne $\mathbb{F}_{\text {G }}$)
- Choose polynomial $f_{2}=f_{1}+p$
- $K_{1} \simeq \mathbb{Q}[X] /\left(f_{1}(X)\right) \cong \mathbb{Q}\left[\theta_{1}\right]$ and $K_{2} \cong \mathbb{Q}[X] /\left(f_{2}(X)\right) \cong \mathbb{Q}\left[\theta_{2}\right]$
- Note: $f_{1} \equiv f_{2} \bmod p$, so have compatible homomorphisms

$$
\phi_{i}: \mathcal{O}_{i} \rightarrow \mathbb{F}_{q}, \text { for } i=1,2 \text { with } \phi_{1}\left(\theta_{1}\right)=\phi_{2}\left(\theta_{2}\right)
$$

- No relative extensions necessary and f independent of input DLOG

Basic variation $p=L_{p^{n}}(2 / 3, c)$: sieving/linear algebra

- Factor bases \mathcal{F}_{1} and \mathcal{F}_{2} of degree 1 ideals of small norm
- Choose smoothness bound B and a sieve limit S
- Pairs (a, b) of coprime integers, $|a| \leq S$ and $|b| \leq S$

$$
\operatorname{No}\left(a-b \theta_{1}\right) \text { and } \operatorname{No}\left(a-b \theta_{2}\right) \quad B \text {-smooth }
$$

- Add logarithmic maps to take into account $h\left(K_{i}\right) \neq 1$ and unit groups
- Obtain linear equation between "logarithms of ideals" in the smoothness bases
- Solve using SGE and Lanczos or Wiedemann

Basic variation $p=L_{p^{n}}(2 / 3, c)$: individual DLOG

- Recursive special \mathfrak{q}-descent procedure similar to \mathbb{F}_{p}^{*}
- Represent $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[t] /\left(f_{1}(t)\right)$
- Assume we want to compute $\log _{t} y$ with $y \in \mathbb{F}_{p^{n}}$
- Search for element $z=y^{i} t^{j}$ for some $i, j \in \mathbb{N}$ with

1. lifting $z \in K_{1}$, norm factors into primes smaller than some bound $B_{1} \in L_{p^{n}}\left(2 / 3,1 / 3^{1 / 3}\right)$,
2. only degree one prime ideals in the factorisation of (z)
3. E.g.: the norm of the lift of z should be squarefree

- Remark: probability of squarefree smoothness is about $6 / \pi^{2}$ probability of smoothness

Basic variation $p=L_{p^{n}}(2 / 3, c)$: individual DLOG

- Factor principal ideal generated by z as

$$
(z)=\prod_{p_{i} \in \mathcal{F}_{1}} \mathfrak{p}_{i}^{e_{i}} \prod_{j} \mathfrak{q}_{j}^{e_{j}}
$$

- Ideals \mathfrak{q}_{j} not contained in \mathcal{F}_{1}, so need to compute DLOGs
- For each \mathfrak{q}_{j}, perform special- \mathfrak{q}_{j} descent:

1. Sieve over pairs (a, b) such that $\mathfrak{q}_{j} \mid\left(a-b \theta_{1}\right)$ and

$$
\operatorname{No}\left(a-b \theta_{1}\right) / \operatorname{No}\left(\mathfrak{q}_{j}\right) \text { and } \operatorname{No}\left(a-b \theta_{2}\right) \quad B_{2} \text {-smooth } B_{2}<B_{1}
$$

2. Factor $\left(a-b \theta_{1}\right)$ and $\left(a-b \theta_{2}\right)$ to obtain new special q_{j} 's
3. Repeat until bound $B_{k}<B \Rightarrow$ DLOGs of all \mathfrak{q}_{j} known

- Remark: special \mathfrak{q}_{j} in both number fi elds K_{1} and K_{2}

Optimisation I: Galois extensions

- p is inert in K_{1}, so isomorphism $\operatorname{Gal}\left(K_{1} / \mathbb{Q}\right) \simeq \operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$
- Thus: K_{1} has to be a cyclic number fi eld of degree n
- Partition factor base \mathcal{F}_{1} in n parts $\mathcal{F}_{1, k}$ with $k=1, \ldots, n$

$$
\left(a-b \theta_{1}\right)=\prod_{k=1}^{n} \prod_{\mathfrak{p}_{i} \in \mathcal{F}_{1,1}} \psi^{k}\left(\mathfrak{p}_{i}\right)^{e_{i, k}}
$$

with $\operatorname{Gal}\left(K_{1} / \mathbb{Q}\right)=\langle\psi\rangle$

- Choose ψ such $\left.\log _{g} \phi_{1}\left(\psi\left(\delta_{i}\right)\right)\right)=p \log _{g} \phi_{1}\left(\delta_{i}\right)$ with $\mathfrak{p}_{i}=\left\langle\delta_{i}\right\rangle$
- Effectively divides factor base size by n

Optimisation II: choice of polynomials

Two possible optimisations:

- Poss I: Maximise automorphism group of K_{1} and K_{2} simultaneously
- Example: $p \equiv 2,5 \bmod 9$, can take

$$
f_{1}=x^{6}+x^{3}+1 \quad f_{2}=x^{6}+(p+1) x^{3}+1
$$

- K_{1} is Galois and K_{2} has non-trivial automorphism order 2
- Poss II: balance size of coeffi cients of \ddagger and f_{2}
- Remark: better to adapt sieving region ...

Optimisation III: individual logarithms

- Instead of factoring $\langle z\rangle$, fi rst write z as

$$
\frac{\sum a_{i} t^{i}}{\sum b_{i} t^{i}}
$$

with a_{i} and b_{i} are of the order of \sqrt{p}.

- Use LLL to fi nd short vector in lattice L

$$
L=\left(\begin{array}{cccccccccc}
\mathbf{z} & \mathbf{t z} & \mathbf{t}^{\mathbf{2}} \mathbf{z} & \cdots & \mathbf{t}^{\mathbf{n}-\mathbf{1}} \mathbf{z} & \mathbf{p} & \mathbf{p t} & \mathbf{p t}^{\mathbf{2}} & \cdots & \mathbf{p t}^{\mathbf{n}-\mathbf{1}} \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

- Expect LLL fi nds short vector of norm \sqrt{p}

Definition 120-digit challenge

- Adaptation of Joux \& Lercier's implementation for \mathbb{F}_{p}^{*}
- Finite fi eld $\mathbb{F}_{p^{3}}$ with $p=\left\lfloor 10^{39} \pi\right\rfloor+2622$

$$
p=3141592653589793238462643383279502886819
$$

- Group order $p^{3}-1$ has 110-bit factor /
- Defi nition of number fi elds K and K_{2} by

$$
f_{1}(X)=X^{3}+X^{2}-2 X-1 \quad \text { and } \quad f_{2}(X)=f_{1}(X)+p,
$$

where we have $\mathbb{F}_{p^{3}} \simeq \mathbb{F}_{p}[t] /\left(f_{1}(t)\right)$

Number fields K_{1} and K_{2}

- $\mathbb{Q}\left[\theta_{1}\right]$ is a cubic cyclic number fi eld with Galois group

$$
\operatorname{Aut}\left(\mathbb{Q}\left[\theta_{1}\right]\right)=\left\{\theta_{1} \mapsto \theta_{1}, \theta_{1} \mapsto \theta_{1}^{2}-2, \theta_{1} \mapsto-\theta_{1}^{2}-\theta_{1}+1\right\}
$$

- K_{1} has class number 1 and System of fundamental units

$$
u_{1}=\theta_{1}+1 \text { and } u_{2}=\theta_{1}^{2}+\theta_{1}-1
$$

- $\mathbb{Q}\left[\theta_{2}\right]$ has signature $(1,1)$, so only need single Schirokauer logarithmic map λ

Factor bases and sieving

- Smoothness bases with 1000000 prime ideals
- in the $\mathbb{Q}\left[\theta_{1}\right]$ side, we include 899999 prime ideals, but only 300000 are meaningful due to the Galois action,
- in the $\mathbb{Q}\left[\theta_{2}\right]$ side, we include 700000 prime ideals.
- Lattice sieving: only algebraic integers $a+b \theta_{2}$ divisible by prime ideal in $\mathbb{Q}\left[\theta_{2}\right]$
- Norms to be smoothed in $\mathbb{Q}\left[\theta_{2}\right]$ are 150 bit integers
- Norms in $\mathbb{Q}\left[\theta_{1}\right]$ are 110 bit integers
- Sieving took 12 days on a 1.15 GHz 16-processors HP AlphaServer GS1280

Linear algebra

- Compute the kernel of a 1163482×793188 matrix
- Coeffi cients mostly equal modulo ℓ to $\pm 1, \pm p$ or $\pm p^{2}$
- SGE: 450246×445097 matrix with 44544016 non null entries
- Lanczos's algorithm: about one week
- $h\left(K_{1}\right)=1$, check DLOGs of generators of ideals in \mathcal{F}_{1}

$$
\begin{aligned}
\left(t^{2}+t+1\right)^{\left(p^{3}-1\right) / I} & =G^{294066886450155961127467122432171} \\
(t-3)^{\left(p^{3}-1\right) / I} & =G^{364224563635095380733340123490719} \\
(3 t-1)^{\left(p^{3}-1\right) / I} & =G^{468876587747396380675723502928257}
\end{aligned}
$$

where $G=g^{\left(p^{3}-1\right) / 1159268202574177739715462155841484 /}$ and $g=-2 t+1$.

Individual DLOGs

- Challenge $\gamma=\sum_{i=0}^{2}\left(\left\lfloor\pi \times p^{i+1}\right\rfloor \bmod p\right) t^{i}$
- Using Pollard-Rho, computed DLOG modulo ($p^{3}-1$)/I,
3889538915890151897584592293694118467753499109961221460457697271386147286910282477328.
- To obtain a complete result, we expressed

$$
\gamma=\frac{-90987980355959529347 t^{2}-114443008248522156910 t+154493664373341271998}{94912764441570771406 t^{2}-120055569809711861965 t-81959619964446352567}
$$

- Numerator and denominator are both smooth in $\mathbb{Q}\left[\theta_{1}\right]$
- Three level tree with 80 special-q ideals
- Recovered DLOG modulo I, namely 110781190155780903592153105706975
- Each special-q sieving took 10 minutes or a total of 14 hours

Variation I: smaller p

- Polynomial setup same as in basic case
- Main problem: sieving space is not large enough, due to larger n
- \Rightarrow cannot collect enough relations
- Solution: sieve over elements of larger degree than 1

$$
\sum_{i=0}^{t} a_{i} \theta_{1}^{i} \quad \text { and } \quad \sum_{i=0}^{t} a_{i} \theta_{2}^{i}
$$

- Bound on norm: $(n+t)^{n+t} B_{a}{ }^{n} B_{f}{ }^{t}$ with
- B_{a} is an upper bound on the absolute values of the a_{i}
- B_{f} a similar bound on the coeffi cients of \ddagger (resp. f_{2})

Variation II: larger p

- p is too large to simply add to f_{1}, so need different polynomial construction
- Only requirement is: $f_{1}(x) \mid f_{2}(x) \bmod p$
- Idea: construct $f_{2}(x)$ of degree $>n$ with small coeffi cients such that $f_{1}(x) \nmid f_{2}(x)$ over \mathbb{Q}
- Choose constant W and construct $f_{1}(x)=f_{0}(x+W)$, coeffi cient at least W^{n}
- Use LLL to reduce the lattice

- Need vector with coeffi cients smaller than W^{n} so

$$
2^{(D+1) / 4} p^{n /(D+1)} \leq W^{n}
$$

Complexity of variations

- p can be written as $L_{q}\left(I_{p}, c\right)$ with $1 / 3<I_{p}<2 / 3$

$$
L_{q}\left(1 / 3,(128 / 9)^{1 / 3}\right) \simeq L_{q}(1 / 3,2.423 \ldots)
$$

- p can be written as $L_{q}(2 / 3, c)$ for a constant c

$$
L_{q}\left(1 / 3,2 c^{\prime}\right) \quad \text { with } \quad c^{\prime}=\frac{4}{3}\left(\frac{3 t}{4(t+1)}\right)^{1 / 3}
$$

sieve over elements of degree t with $3 c^{3} t(t+1)^{2}-32=0$

- p can be written as $L_{q}(2 / 3, c)$ for a constant c

$$
L_{q}\left(1 / 3,2 c^{\prime}\right) \quad \text { with } \quad 9 c^{\prime 3}-\frac{6}{c} c^{\prime 2}+\frac{1}{c^{2}} c^{\prime}-8=0
$$

- p can be written as $L_{q}\left(I_{p}, c\right)$ with $I_{p}>2 / 3$

$$
L_{q}\left(1 / 3,(64 / 9)^{1 / 3}\right) \simeq L_{q}(1 / 3,1.923 \ldots)
$$

JLSV NFS: complexity $=L_{q}\left(1 / 3,2 c^{\prime}\right)$

Conclusions

- New, simple and practical variations of NFS
- Can simply adapt existing implementations of NFS for \mathbb{F}_{p}
- More optimisations: large prime variation, multiple number fi elds, ...
- Combined with talk of Joux: obtain two families of algorithms such that DLOGs in $\mathbb{F}_{p^{n}}$ can be computed in $L_{p^{n}}(1 / 3)$ time

