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Small fields

Small fields: k = Fq,Q,C(t), ...

X smooth projective algebraic variety over k

We are interested in:

rational points X (k)

algebraic points X (k̄)

rational curves on X and their relation to arithmetic properties of X
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Classification via degree

1 low degree: Fano

2 high degree: general type

3 intermediate type

Basic examples:

1 Xd ⊂ Pn, with d ≤ n: quadrics, cubic surfaces

2 Xd with d ≥ n + 2

3 Xd with d = n + 1: K3 surfaces (quartic in P3, intersection of three
quadrics in P5), abelian varieties, Calabi-Yau varieties

More intrinsically, classification by the ampleness of the canonical class.
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Birational classification

How close is X to the basic projective variety: Pn:

rational = birational to Pn

unirational = dominated by Pn

uniruled = dominated by Y × P1, with dim(Y ) = dim(X )− 1

stably rational etc.

These properties depend on the field.
Small degree surfaces (Fano surfaces) over algebraically closed fields are
rational. Cubic surfaces with a rational point are unirational.
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Rational connectivity

Let X be a variety over an algebraically closed field k. When X = Pn,
every pair of points can be connected by a line. Any finite set of points
can be connected by a rational curve.

In general, we have (at least) two notions of connectivity via rational
curves:

(1) For all x1, x2 ∈ X (k) there exists a chain of rational curves
C1 ∪ . . . ∪ Cr ⊂ X connecting x1 and x2;

(2) For all x1, x2 ∈ X (k) there exists a free rational curve C ⊂ X
connecting x1, x2.

(3) Same for a finite set of points.

For smooth projective X these are equivalent and birational properties.
The situation is less clear for quasi-projective X :

Question

Does (2) hold for the smooth locus of a partial desingularization of
singular cubic surface?
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Rational curves

Theorem

Smooth Fano varieties are rationally connected.

Theorem (Esnault 2001)

Every smooth rationally connected variety over a finite field has a rational
point.

Theorem (Graber-Harris-Starr 2001)

Every smooth rationally connected variety X over k = C(t) has a rational
point. Moreover, X (k) is Zariski dense.
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Rational curves II

A surface of general type over C should have at most finitely many
rational curves.

Abelian varieties don’t contain rational curves.

Counting rational curves on Calabi-Yau varieties is an interesting
problem.

A general K3 surface over C contains infinitely many rational curves.
It is not known whether every K3 surface over Q̄ or F̄p contains
infinitely many rational curves.

Varieties of rational curves of fixed degree on Fano varieties carry
interesting geometric information (variety of lines on a cubic fourfolds
is diffeomorphic to a symmetric square of a K3 surface).

In positive characteristic, there exist unirational surfaces of general type:

xp+1 + yp+1 + zp+1 + tp+1 = 0

is unirational in characteristic p and is of general type for p ≥ 5.
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Abelian varieties

Every abelian surface is isogenous to the Jacobian of a hyperelliptic curve
of genus 2.

Theorem

Pirola (1989): a generic abelian variety of dimension ≥ 3 over C does
not contain hyperelliptic curves.

de Jong, Oort (1996): same over large fields of positive characteristic

Question

Let k be the closure of a finite field. Is A dominated by the Jacobian of a
hyperelliptic curve?
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Curves and their Jacobians

Let C be a smooth projective curve of genus g(C ) ≥ 2 over a finite field k.
Assume that C (k) 6= ∅. Fix a point c0 ∈ C (k) and the embedding

C ↪→ J = JC

c 7→ c − c0
.

Put

J{`} := ∪n∈NJ(k̄)[`n] - the `-primary part of J(k̄)

S - a finite set of primes

λS : J(k̄) → J{S} :=
∏

`∈S J{`} - the projection
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Curves and their Jacobians II

Theorem (Bogomolov-T. 2005)

Let C be a smooth projective curve over a finite field k of genus ≥ 2. Let
A be an abelian variety containing C . Assume that C generates A (i.e.,
J = JC surjects onto A). Then

A(k̄) = ∪m=1 mod n m · C (k̄), for all n ∈ N.

Similar result for semi-abelian varieties.

Given a ∈ A(k̄), how to compute m?

Applications to cryptography?
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Curves and their Jacobians III

Theorem (Bogomolov-T. 2005)

Let S be a finite set of primes. There exists an infinite set of primes Π
containing S , of positive density, such that

λS : C (k̄) → ⊕`∈ΠA{`}

is surjective.
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Sketch of proof

Consider the maps

Cn φn−→ Sym(n)(C )

↓ P
n−g
x

J(k) = J(k) 3 x ,

for n ≥ 2g + 1.

Lemma

For k large enough, there exists a y ∈ Pn−g
x (k) such that the cycle

c1 + · · ·+ cn = φ−1
n (y) is irreducible over k.

It follows that

y =
n∑

j=1

Frj(c1).
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Sketch of proof II

Lifting Fr to an element F̃r ∈ Endk(A), we obtain

y = Ψ(c1), where Ψ :=
n∑

j=1

F̃r
j ∈ Endk(A).

Moreover, for any finite set of points x1, . . . , xr ∈ A(k) we find

{x1, . . . , xr} ⊂ Ψ · C (k).

A similar argument allows to replace Ψ ∈ Endk(A) by the endomorphism
multiplication by n ∈ Endk(A).
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Points in towers

Let k be a finite field, S a finite set of primes and kS the field extension
generated by J{S}-points.

Boxall (1992)

C (kS) ∩ J{S} is finite

Recall: λS : C (kS) → J{S} is surjective.

Intuition: To get points in C (kS) of orders divisible by high powers of `,
for ` ∈ S , we need to increase the number of factors outside S .
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ABC over finite fields

For c ∈ C (k̄) ↪→ J(k̄), let

∆(c) be the order of c in J(k̄) and

f(c) =
∏

`|∆(c) ` be the conductor

These invariants depend on the embedding C ↪→ J.

Conjecture

For all ε > 0 one has
∆(c) = O(f(c)1+ε).
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K3 surfaces

Let X = Ã/G be a Kummer K3 surface: a desingularization of the
quotient of an abelian surface by the action of a finite group
G = Z/2,Z/3, ... (there is a finite list of groups and actions).

For example,

X :
3∑

i=0

x4
i = 0.

A Kummer K3 surface X is uniruled (or unirational) iff X is supersingular,
i.e., A is supersingular (Shioda, Katsura).

Theorem (Rudakov-Shafarevich)

If the characteristic of k equals 2 then a K3 surface is supersingular if and
only if it is unirational.
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Kummer surfaces over finite fields

Theorem (Bogomolov-T. 2005)

Assume that X is defined over a finite field k. Then there exists a finite
extension k ′/k such that for every finite set of algebraic points
{x1, . . . , xn} ⊂ X ◦(k̄) in the complement to exceptional curves there exists
an geometrically irreducible rational curve C , defined over k ′, with

{x1, . . . , xn} ⊂ C (k̄)

This gives examples of rationally connected, non-uniruled K3 surfaces over
finite fields.
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Proof

Let G = Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix c0 ∈ C (k) (a ramification point under
the standard involution). We have an embedding

C ↪→ A

c 7→ c − c0

into the Jacobian A of C . We know that A(k̄) = ∪nn · C (k̄). The image
of C in A/G is a rational curve.

Same holds for the images of n · C . Thus
every algebraic point on X lies on a rational curve.
A similar argument works for finitely many points and other groups G .
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Surfaces of general type

We work over a finite field of characteristic ≥ 3. Consider the diagram

X1 → X

↓ ↓
P2 → X0

,

where

X0 is a unirational surface of general type, P2 → X0

X1 → P2 is a double cover ramified in a curve of degree 6; it is a K3
surface. Moreover, we may assume that X1 is a non-supersingular
(and thus non-uniruled) Kummer surface.

Then X is

rationally connected,

of general type,

non-uniruled.
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Number fields

Let X = A/G be a Kummer K3 surface, with A the Jacobian of a genus 2
curve C and G = Z/2, over a number field k. Assume c0 (from before) is
defined over k. Fix a good model over Spec(Ok). Let S be a finite set of
places of good reduction. For v ∈ S , choose a point x̃v ∈ X (Fv ).

Theorem (Bogomolov-T. 2005)

There exists a rational point x ∈ X (k) such that for all v ∈ S ,

xv = x̃v .

This a version of weak approximation - approximation of first order jets.
This property is not known for cubic surfaces (or threefolds) over number
fields.
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Some questions

Let X ⊂ P3 be a cubic surface over Z, with mild singularities (rational
double points). Assume that X (Q) = X (Z) 6= ∅.

1 Given finitely many points x1, . . . , xn ∈ X (Q) find a geometrically
irreducible rational curve, defined over Q, which avoids the
singularities of X , and passes through x1, . . . , xn (interpolation).

2 Fix a finite set S of primes of good reduction and for each p ∈ S a
point x̃p ∈ X (Z/p). Find x ∈ X (Z) with xp = x̃p for all p ∈ S .

3 Compile data on points of smallest height in families of cubic surfaces.

4 Implement an algorithm computing rkPic(X ) and the action of the
Galois group of a splitting field of X on the 27 lines.

Let X ⊂ P3 be a quartic K3 surface over Q. How to compute rkPic(XQ)
effectively? The geometric rank?
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