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Cosets and Permutation Representation

H:= a subgroup of finite index, say n, of a group G;

T := a right transversal of H in G, thus G =
∐

t∈T Ht;

(t · g):= unique element in T ∩ Htg;

G/CoreG(H) embeds into Sym(n);

We assume that G be a subgroup of Sym(n);



Double Cosets, Orbitals, and Suborbits

T × T becomes G-set via (s, t) · g := (s · g, t · g);

The G-orbits on T × T are called orbitals;

X := (T × T )//G a set of representatives of (H, H)-cosets;

(1, x) · G ↔ x · H ↔ HxH

define bijections between orbitals, suborbits and (H, H)-cosets;



Linear and Monomial Representations

W := one-dimensional H-module;

µ:= linear character of H afforded by W

wh := µ(h)w.

K := ker µ and ` := |H : K|;

F := Q(ζ`), where ζ` is a primitive `-th root of 1 ∈ C;



V :=
⊕

t∈T W ⊗ t is the FG-module affording the monomial representa-
tion µG;

M(g)st := µ(sg(s · g)−1)δs·g,t,

where s, t ∈ T , g ∈ G, is the associated monomial matrix;



Centralizer Algebra

Definition: The orbital (1, x) · G is µ-central if [H ∩ Hx, x−1] ≤ ker µ.

Theorem: (P. 2005) EndG(V ) =
⊕

Λ FcΛ, where Λ varies in the family of
all µ-central orbitals, and c = cΛ is a matrix such that:

1. Supp(c) = Λ;

2. if Λ = (1, x) · G, x ∈ X, then c(1,x)·g = ρ1x(g),
where ρst(g) := µ(tg(t · g)−1(s · g)g−1s−1), s, t ∈ T , g ∈ G..



Adjacency Algebra

If µ = 1H , the trivial character of H, then V becomes the permutation
module P affording the permutation character (1H)G.

a = aΛ is the adjacency matrix of the orbital Λ, that is, ast = 1 iff (s, t) ∈

Λ, ast = 0 otherwise.

Corollary: (Higman , Bannai-Îto, Michler-Weller) EndG(P ) =
⊕

Λ QaΛ.



Generalized Intersection Numbers

Reorder orbitals so that µ-central occur first and set ci := cΛi
;

We call the structure constants pk
ij with respect to the basis (c1, . . . , cr) of

C := EndG(V ) the generalized intersection numbers

cicj =
r∑

k=1

pk
ijck.

Theorem: pk
ij may be efficiently obtained as a sum of µ-values depending

on the G-structure of T × T . Moreover, pk
i1 = δik and pk

1j = δjk. In
particular, c1 is the identity matrix and the first row of ci is the i-th standard
vector.



and Intersection Numbers

Corollary: When µ = 1H , pk
ij is an intersection number and equals

|xi · H ∩ xj′ · Hxk|,

where x−1
j ∈ Hxj′H.



Reducing Dimensions: Episode I

First reduction: σ : cj −→ (pk
ij) is the right regular representation for

C = EndG(V ).

σ reduces the size of matrices from n = |G : H| to r, the number of
µ-central orbitals.

Example: For G = PGL2(73), P ∈ Syl73(G), H = NG(P ), n = 2628

and r = 36.



Reducing Dimensions: Episode II

Using the special shape of σ(ci) we obtain heuristically a set of generators
for σ(C) (as an algebra) in dlog2(r)e steps.

Z0 := Z(σ(C)), the center of σ(C), can be efficiently obtained solving a
linear system with a small number of equations.

Second reduction: Let τ : Z0 → (F )t be the right regular representation
for Z0, where t = dimF (Z0).

We will analyze Z = τ(Z0).



One-generator Algebras

Definition: We say A is a one-generator algebra over a field E if A = E[a]

for some a ∈ A.

Theorem: (Chillag 1995 P. 2005) Let A be a commutative, semisimple,
finite-dimensional E-algebra, E a separable field. If |E| > dimE(A), then
A is a one-generator algebra.



Probabilistic Search

Corollary Let Z = τ(Z0), then Z = F [z], for some z.

z is obtained using a probabilistic approach.

Theorem: Let F be an infinite field, Z a semisimple, finite dimensional,
commutative algebra over F , z1, . . . , zt an F -basis for Z. Then z =
∑t

i=1 aizi satisfies Z = F [z] unless (a1, . . . , at) ∈ Zt lies in the union of(
t
2

)
hyperplanes Hij ≤ Et, where E is a splitting field for Z.



Central Primitive Idempotents

Theorem: Let Z = τ(Z(σ(C))) ≤ (F )t be generated by z and E =

Q(ζe), where |ζe| = Exp(G). Then

(a) z admits distinct eigenvalues λ1, . . . , λt in E∗, where t = dimF (Z).

(b) Let Li(x) be the Lagrange polynomials relative to λ1, . . . , λt, then
Li(z) are the central primitive idempotents of Z.

(c) Let fi = (χi, µ
G) be the multiplicity of χi in µG. Then f2

i = rank(êi),
where êi = Li(τ

−1(z)) is a primitive central idempotent for σ(C).

(d) Let êi =
∑r

j=1 aijσ(cj), where cj are the µ-adjacency matrices. Then
aij is the (1, j)-entry of êi. In particular, aij ∈ E.



Extended Gollan-Ostermann numbers

Definition: Given a µ-central orbital Λj and g ∈ G we define the extended
Gollan-Ostermann number

pj(g) =
∑

u∈T

µ(xjhug(hu)−1),

where u ∈ T satisfies xj · hug = 1 · u, for some h ∈ H.



Irreducible Characters values

Theorem: Let ei = Li(σ
−1τ−1(z)) = σ−1(êi), then the ei’s are the

pairwise orthogonal primitive central idempotents for EM(G). Moreover,
ei =

∑t
j=1 aijcj for some aij ∈ E. Let pj(g) be the extended Gollan-

Ostermann numbers. If χi ∈ Irr(G|µG) corresponds to ei, then

χi(g) =
1

fi

r∑

j=1

aijpj(g),

where f2
i = (χi, µ

G)2 = rank(êi). In particular, di = χi(1) = nai1
fi

.

Corollary: When µ = 1H we obtain an algorithm by Michler and Weller
(2002).

Corollary: When G is finite and H = 1 we obtain an algorithm due to
Frobenius and Burnside.



Modular reduction

Unfortunately arithmetic in the cyclotomic field E = Q(ζe) might be ex-
pensive if e = Exp(G) is big;

Resort to a modular à la Dixon approach;

p a prime congruent to 1 (mod e) and p > max(2n, t);

L := Fp and εe ∈ L∗ such that |εe| = e;

Build homorphism θ from Z[ζe] into L via

θ(f(ζe)) = f(εe).



Set ML(g) := θ(M(g)), where we extend θ to matrices and M is the
monomial representation;

Using a theorem of Brauer and Nesbitt we may express the modular re-
duction θ(χi(g)) as in the cyclotomic case;

Knowing the power maps in G we may lift these modular values uniquely
into E.


