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Cosets and Permutation Representation
H:= a subgroup of finite index, say n, of a group G;
T"= aright transversal of H in G, thus G = [[;c1 Ht;
(t - g):= unique elementin T'N Htg;
G /Coreq(H ) embeds into Sym(n);

We assume that G be a subgroup of Sym(n);



Double Cosets, Orbitals, and Suborbits
T x T becomes G-setvia (s,t) -g .= (s-g,t-g);
The G-orbits on T x T are called orbitals;

X = (T xT)//G a set of representatives of (H, H )-cosets;

(1,z) - G« x-H +— HxH

define bijections between orbitals, suborbits and (H, H)-cosets;



Linear and Monomial Representations
W .= one-dimensional H-module;

.= linear character of H afforded by W

wh = pu(h)w.

K :=kerpand? := |H : K|;

F := Q(¢y), where (; is a primitive ¢-th root of 1 € C;



V i= @i W @ tis the FFG-module affording the monomial representa-
tion uC;
M(g)st == p(sg(s-9) " 1)dsg,

where s,t € T, g € G, is the associated monomial matrix;



Centralizer Algebra
Definition: The orbital (1,z) - G is p-central if [H N H%, 2~ 1] < ker p.

Theorem: (P. 2005) End; (V') = @A Fep, where A varies in the family of
all u-central orbitals, and ¢ = cp Is a matrix such that:

1. Supp(c) = A;

2. A= (1,z) -G,z € X, then C(1a)g = 012(9),
where pg(g) = pu(tg(t-g) (s -g)g~ts71), s,t €T, g€ G..



Adjacency Algebra

If w = 1p, the trivial character of H, then V becomes the permutation
module P affording the permutation character (1 5)¢.

a = ap IS the adjacency matrix of the orbital A, thatis, ass = 1 iff (s,t) €
N\, ass = O otherwise.

Corollary: (Higman , Bannai-Ito, Michler-Weller) End(P) = ®a Qan.



Generalized Intersection Numbers
Reorder orbitals so that u-central occur first and set ¢; 1= cp ;;

We call the structure constants p,]fj with respect to the basis (c1, ..., ¢r) Of
C = Endg (V) the generalized intersection numbers

T
— k
CiCj = Z pz]Ck
k=1

Theorem: p,’fj may be efficiently obtained as a sum of u-values depending
on the G-structure of T x T. Moreover, pj; = & and p§; = §;;. In
particular, cq is the identity matrix and the first row of ¢; is the i-th standard
vector.



and Intersection Numbers

Corollary: When u = 1, p,i?j IS an intersection number and equals
|x; - HN T - Hxpl,

where acj_l c ij,H.



Reducing Dimensions: Episode |

First reduction: ¢ @ ¢; — (pfj) IS the right regular representation for
C = Eﬂdg(V).

o reduces the size of matrices from n = |G : H| to r, the number of
p-central orbitals.

Example: For G = PGL»(73), P € Syly3(G), H = Ng(P), n = 2628
and » = 36.



Reducing Dimensions: Episode |

Using the special shape of o(¢;) we obtain heuristically a set of generators
for o(C') (as an algebra) in [logo>(7)] steps.

Zoy = Z(0o(C)), the center of o(C), can be efficiently obtained solving a
linear system with a small number of equations.

Second reduction: Let 7 : Zg — (F')+ be the right regular representation
for Zg, where t = dimg(Zp).

We will analyze Z = 7(Zp).



One-generator Algebras

Definition: We say A is a one-generator algebra over afield £ if A = E|[a]
for some a € A.

Theorem: (Chillag 1995 P. 2005) Let A be a commutative, semisimple,
finite-dimensional E-algebra, E a separable field. If |E| > dimg(A), then
A Is a one-generator algebra.



Probabllistic Search
Corollary Let Z = 7(Zp), then Z = F'[z], for some z.
z IS obtained using a probabilistic approach.

Theorem: Let F' be an infinite field, Z a semisimple, finite dimensional,
commutative algebra over F', z1,...,2 an F-basis for Z. Then z =
St 1 ajz; satisfies Z = F[z] unless (a1, ...,at) € Z lies in the union of
(é) hyperplanes H;; < Et, where E is a splitting field for Z.



Central Primitive Idempotents

Theorem: Let Z7 = 7(Z(c(C))) < (F): be generated by z and £ =
Q(¢e), where |¢e| = Exp(G). Then

(a) z admits distinct eigenvalues A1, ..., s in E*, where t = dimp(2).

(b) Let L;(x) be the Lagrange polynomials relative to A\1,..., A, then
L;(z) are the central primitive idempotents of Z.

(c) Let f; = (x;, n©) be the multiplicity of x; in u&. Then f,L.2 = rank(e;),
where &, = L;(#—1(2)) is a primitive central idempotent for o (C).

(d) Lete; = =1 a;;0(cj), where c; are the p-adjacency matrices. Then
a;; is the (1, j)-entry of ;. In particular, a;; € E.



Extended Gollan-Ostermann numbers

Definition: Given a p-central orbital A; and g € G we define the extended
Gollan-Ostermann number

pi(9) = Y plzjhug(hu)t),
ucT

where u € T' satisfies z; - hug = 1 - u, for some h € H.



Irreducible Characters values

Theorem: Lete; = L;(c~1771(2)) = o7 1(§;), then the ¢;’s are the
pairwise orthogonal primitive central idempotents for EM (G). Moreover,
e; = 23:1 a;;c; for some a;; € E. Let p;(g) be the extended Gollan-

Ostermann numbers. If x; € Irr(G|u©) corresponds to e;, then
1 T
xi(g9) = T > aipi(g),
1 5=1

where f2 = (x;, #%)? = rank(g;). In particular, d; = x;(1) = nL,

Corollary: When 1 = 1 we obtain an algorithm by Michler and Weller
(2002).

Corollary: When G is finite and H = 1 we obtain an algorithm due to
Frobenius and Burnside.



Modular reduction

Unfortunately arithmetic in the cyclotomic field £ = Q({.) might be ex-
pensive if e = Exp(G) is big;

Resort to a modular a la Dixon approach;
p a prime congruentto 1 (mod ¢e) and p > max(2n,t);
L :=TFpandee € L* such that |c¢| = e;

Build homorphism 6 from Z[(.] into L via

0(f(Ce)) = fee).



Set M;(g) := 6(M(g)), where we extend 6 to matrices and M is the
monomial representation,;

Using a theorem of Brauer and Nesbitt we may express the modular re-
duction 6(x;(g)) as in the cyclotomic case;

Knowing the power maps in G we may lift these modular values unigquely
Into F.



