Irreducible Constituents of Monomial Characters

Prof. Andrea Previtali
Università dell'Insubria-Como, Italy
ANDREA.PREVITALI@UNINSUBRIA.IT
HTTP://SCIENZE-COMO.UNINSUBRIA.IT/PREVITALI
$$
\text { Berlin, 1. August } 2006
$$

Cosets and Permutation Representation

$H:=$ a subgroup of finite index, say n, of a group G;
$T:=$ a right transversal of H in G, thus $G=\coprod_{t \in T} H t ;$
$(t \cdot g):=$ unique element in $T \cap H t g$;
$G / \operatorname{Core}_{G}(H)$ embeds into Sym(n);

We assume that G be a subgroup of Sym (n);

Double Cosets, Orbitals, and Suborbits

$T \times T$ becomes G-set via $(s, t) \cdot g:=(s \cdot g, t \cdot g) ;$
The G-orbits on $T \times T$ are called orbitals;
$X:=(T \times T) / / G$ a set of representatives of (H, H)-cosets;

$$
(1, x) \cdot G \leftrightarrow x \cdot H \leftrightarrow H x H
$$

define bijections between orbitals, suborbits and (H, H)-cosets;

Linear and Monomial Representations

W := one-dimensional H-module;
$\mu:=$ linear character of H afforded by W

$$
w h:=\mu(h) w .
$$

$K:=\operatorname{ker} \mu$ and $\ell:=|H: K| ;$
$F:=\mathbb{Q}\left(\zeta_{\ell}\right)$, where ζ_{ℓ} is a primitive ℓ-th root of $1 \in \mathbb{C}$;
$V:=\oplus_{t \in T} W \otimes t$ is the $F G$-module affording the monomial representation μ^{G};

$$
M(g)_{s t}:=\mu\left(s g(s \cdot g)^{-1}\right) \delta_{s \cdot g, t}
$$

where $s, t \in T, g \in G$, is the associated monomial matrix;

Centralizer Algebra

Definition: The orbital $(1, x) \cdot G$ is μ-central if $\left[H \cap H^{x}, x^{-1}\right] \leq \operatorname{ker} \mu$.

Theorem: (P. 2005) End ${ }_{G}(V)=\oplus_{\wedge} F c_{\Lambda}$, where \wedge varies in the family of all μ-central orbitals, and $c=c_{\Lambda}$ is a matrix such that:

1. $\operatorname{Supp}(c)=\wedge$;
2. if $\wedge=(1, x) \cdot G, x \in X$, then $c_{(1, x) \cdot g}=\rho_{1 x}(g)$, where $\rho_{s t}(g):=\mu\left(t g(t \cdot g)^{-1}(s \cdot g) g^{-1} s^{-1}\right), s, t \in T, g \in G .$.

Adjacency Algebra

If $\mu=1_{H}$, the trivial character of H, then V becomes the permutation module P affording the permutation character $\left(1_{H}\right)^{G}$.
$a=a_{\wedge}$ is the adjacency matrix of the orbital \wedge, that is, $a_{s t}=1$ iff $(s, t) \in$ $\wedge, a_{s t}=0$ otherwise.

Corollary: (Higman , Bannai-Îto, Michler-Weller) $\operatorname{End}_{G}(P)=\oplus_{\wedge} \mathbb{Q} a_{\wedge}$.

Generalized Intersection Numbers

Reorder orbitals so that μ-central occur first and set $c_{i}:=c_{\Lambda_{i}}$;

We call the structure constants $p_{i j}^{k}$ with respect to the basis $\left(c_{1}, \ldots, c_{r}\right)$ of $C:=\mathrm{End}_{G}(V)$ the generalized intersection numbers

$$
c_{i} c_{j}=\sum_{k=1}^{r} p_{i j}^{k} c_{k} .
$$

Theorem: $p_{i j}^{k}$ may be efficiently obtained as a sum of μ-values depending on the G-structure of $T \times T$. Moreover, $p_{i 1}^{k}=\delta_{i k}$ and $p_{1 j}^{k}=\delta_{j k}$. In particular, c_{1} is the identity matrix and the first row of c_{i} is the i-th standard vector.

and Intersection Numbers

Corollary: When $\mu=1_{H}, p_{i j}^{k}$ is an intersection number and equals

$$
\left|x_{i} \cdot H \cap x_{j^{\prime}} \cdot H x_{k}\right|,
$$

where $x_{j}^{-1} \in H x_{j^{\prime}} H$.

Reducing Dimensions: Episode I

First reduction: $\sigma: c_{j} \longrightarrow\left(p_{i j}^{k}\right)$ is the right regular representation for $C=\mathrm{End}_{G}(V)$.
σ reduces the size of matrices from $n=|G: H|$ to r, the number of μ-central orbitals.

Example: For $G=\mathrm{PGL}_{2}(73), P \in \operatorname{Syl}_{73}(G), H=N_{G}(P), n=2628$ and $r=36$.

Reducing Dimensions: Episode II

Using the special shape of $\sigma\left(c_{i}\right)$ we obtain heuristically a set of generators for $\sigma(C)$ (as an algebra) in $\left\lceil\log _{2}(r)\right\rceil$ steps.
$Z_{0}:=\mathrm{Z}(\sigma(C))$, the center of $\sigma(C)$, can be efficiently obtained solving a linear system with a small number of equations.

Second reduction: Let $\tau: Z_{0} \rightarrow(F)_{t}$ be the right regular representation for Z_{0}, where $t=\operatorname{dim}_{F}\left(Z_{0}\right)$.

We will analyze $Z=\tau\left(Z_{0}\right)$.

One-generator Algebras

Definition: We say A is a one-generator algebra over a field E if $A=E[a]$ for some $a \in A$.

Theorem: (Chillag 1995 P. 2005) Let A be a commutative, semisimple, finite-dimensional E-algebra, E a separable field. If $|E|>\operatorname{dim}_{E}(A)$, then A is a one-generator algebra.

Probabilistic Search

Corollary Let $Z=\tau\left(Z_{0}\right)$, then $Z=F[z]$, for some z.
z is obtained using a probabilistic approach.

Theorem: Let F be an infinite field, Z a semisimple, finite dimensional, commutative algebra over F, z_{1}, \ldots, z_{t} an F-basis for Z. Then $z=$ $\sum_{i=1}^{t} a_{i} z_{i}$ satisfies $Z=F[z]$ unless $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$ lies in the union of $\binom{t}{2}$ hyperplanes $H_{i j} \leq E^{t}$, where E is a splitting field for Z.

Central Primitive Idempotents

Theorem: Let $Z=\tau(\mathrm{Z}(\sigma(C))) \leq(F)_{t}$ be generated by z and $E=$ $\mathbb{Q}\left(\zeta_{e}\right)$, where $\left|\zeta_{e}\right|=\operatorname{Exp}(G)$. Then
(a) z admits distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{t}$ in E^{*}, where $t=\operatorname{dim}_{F}(Z)$.
(b) Let $L_{i}(x)$ be the Lagrange polynomials relative to $\lambda_{1}, \ldots, \lambda_{t}$, then $L_{i}(z)$ are the central primitive idempotents of Z.
(c) Let $f_{i}=\left(\chi_{i}, \mu^{G}\right)$ be the multiplicity of χ_{i} in μ^{G}. Then $f_{i}^{2}=\operatorname{rank}\left(\widehat{e}_{i}\right)$, where $\hat{e}_{i}=L_{i}\left(\tau^{-1}(z)\right)$ is a primitive central idempotent for $\sigma(C)$.
(d) Let $\widehat{e}_{i}=\sum_{j=1}^{r} a_{i j} \sigma\left(c_{j}\right)$, where c_{j} are the μ-adjacency matrices. Then $a_{i j}$ is the $(1, j)$-entry of \widehat{e}_{i}. In particular, $a_{i j} \in E$.

Extended Gollan-Ostermann numbers

Definition: Given a μ-central orbital \wedge_{j} and $g \in G$ we define the extended Gollan-Ostermann number

$$
p_{j}(g)=\sum_{u \in T} \mu\left(x_{j} h u g(h u)^{-1}\right)
$$

where $u \in T$ satisfies $x_{j} \cdot h u g=1 \cdot u$, for some $h \in H$.

Irreducible Characters values

Theorem: Let $e_{i}=L_{i}\left(\sigma^{-1} \tau^{-1}(z)\right)=\sigma^{-1}\left(\widehat{e}_{i}\right)$, then the e_{i} 's are the pairwise orthogonal primitive central idempotents for $E M(G)$. Moreover, $e_{i}=\sum_{j=1}^{t} a_{i j} c_{j}$ for some $a_{i j} \in E$. Let $p_{j}(g)$ be the extended GollanOstermann numbers. If $\chi_{i} \in \operatorname{Irr}\left(G \mid \mu^{G}\right)$ corresponds to e_{i}, then

$$
\chi_{i}(g)=\frac{1}{f_{i}} \sum_{j=1}^{r} a_{i j} p_{j}(g)
$$

where $f_{i}^{2}=\left(\chi_{i}, \mu^{G}\right)^{2}=\operatorname{rank}\left(\widehat{e}_{i}\right) . \operatorname{In}$ particular, $d_{i}=\chi_{i}(1)=\frac{n a_{i 1}}{f_{i}}$.
Corollary: When $\mu=1_{H}$ we obtain an algorithm by Michler and Weller (2002).

Corollary: When G is finite and $H=1$ we obtain an algorithm due to Frobenius and Burnside.

Modular reduction

Unfortunately arithmetic in the cyclotomic field $E=\mathbb{Q}\left(\zeta_{e}\right)$ might be expensive if $e=\operatorname{Exp}(G)$ is big;

Resort to a modular à la Dixon approach;
p a prime congruent to $1(\bmod e)$ and $p>\max (2 n, t)$;
$L:=\mathbb{F}_{p}$ and $\varepsilon_{e} \in L^{*}$ such that $\left|\varepsilon_{e}\right|=e ;$
Build homorphism θ from $\mathbb{Z}\left[\zeta_{e}\right]$ into L via

$$
\theta\left(f\left(\zeta_{e}\right)\right)=f\left(\varepsilon_{e}\right) .
$$

Set $M_{L}(g):=\theta(M(g))$, where we extend θ to matrices and M is the monomial representation;

Using a theorem of Brauer and Nesbitt we may express the modular reduction $\theta\left(\chi_{i}(g)\right)$ as in the cyclotomic case;

Knowing the power maps in G we may lift these modular values uniquely into E.

