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Abstract

1 Introduction

In [4] a regulator bound for algebraic number fields F was derived which makes
use of specific data of F . That bound is not completely explicit and difficult to
determine for fields of higher degree. Since lower regulator bounds are important
for many computational tasks in algebraic number fields we develop an explicit
lower bound in this paper which is best possible in a way specified below.

2 An extremal value problem

Let F be an algebraic number field of degree n with ring of integers oF and
conjugates F (1) = F, ..., F (n). As usual, we assume that the first r1 conjugates
are real, that the remaining 2r2 conjugates are complex so that the first r1 + r2

conjugates correspond to the different archimedian valuations of F . For α ∈ F
we write

T2(α) :=
n∑

j=1

|α(j)|2 .

Let ε be a unit of oF satisfying

T2(ε) ≥ K and T2(ε−1) ≥ K (1)

for some constant K > n. Then ε is not a root of unity. It is well known [6, 5]
that a lower regulator bound for F can be deduced from a lower bound for

L(ε) :=
n∑

j=1

log2 |ε(j)| .

To solve that task we put xj := log |ε(j)| and x = (x1, ..., xn). Because of the
side conditions

|N(ε)| = 1 , T2(ε) ≥ K , T2(ε−1) ≥ K
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we want to solve the minimization problem

min f(x) for f(x) := xxtr (2)

on the closed subset SK ⊂ Rn consisting of those vectors x whose coordinates
satisfy

1.
∑n

j=1 xj = 0 ,

2.
∑n

j=1 e2xj ≥ K ,

3.
∑n

j=1 e−2xj ≥ K .

We note that K > n yields 0 6∈ SK . Also, the conditions imply that each vector
of SK has positive and negative coordinates.

The first lemma in [4] shows that this minimization problem has a global
minimum, say in z ∈ SK , and that z has at most 3 different coordinates. We
denote these coordinates by a, b, c. Because of f(z) = f(−z) we can assume
without loss of generality that a > b > c, a > 0, c < 0 and the multiplicitiy i of
a is ≥ n/2.

For abc 6= 0 the value f(z) is larger than or equal to the minimum MK of
f(x) on the set TK consisting of those x = (x1, ..., xn) ∈ Rn satisfying

1.
∑n

j=1 xj = 0 ,

2.
∑n

j=1 e2xj ≥ K ,

3.
∏n

j=1 xj 6= 0 .

In Theorem (6.17) of chapter 5 of [3] it is shown that

MK ≥ n

4

(
log

(
K

n
+
(

K2

n2
− 1
)1/2

))2

=: MK,0 (3)

under the additional restriction that the number of positive coordinates is at
least n/2.

For ease of notation, we recall that for cosh : R≥0 → R≥1 we have:

arcosh(x) = log(x +
√

x2 − 1)

Thus we can write
MK,0 =

n

4
arcosh2(

K

n
) .

It remains to discuss the case b = 0. We assume that the frequencies of the
coordinates a, b, c in z are i, j, k, respectively. Because of f(x) = f(−x) we can
assume that i ≥ k. We therefore need to minimize f(x) on the set TK,j whose
elements satisfy

1. x1 = ... = xi = a > 0 = xi+1 = ... = xi+j > c = xn−k+1 = ... = xn ,
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2. ia + kc = 0 ,

3. ie2a + ke2b ≥ K − j ,

4. ie−2a + ke−2b ≥ K − j .

Again, that minimum becomes at most smaller if we omit the last side con-
dition. Then we obtain an analogue of the minimization problem solved in the
proof of Theorem (6.17) in chapter 5 of [3]. A lower bound for the minimum is
obtained via i = k = (n− j)/2:

MK,j :=
n− j

4
arcosh2(

K − j

n− j
) (4)

We note that we necessarily have 0 < j ≤ n − 2. Hence, it suffices to show
that MK,j is decreasing in j in order to obtain a global lower bound MK,n−2

for our original minimization problem.

Lemma 1 MK,j is a decreasing function in j for j ∈ [0, n − 2] if we stipulate
K/n ≥ 1 +

√
2.

Proof We recall arcosh(x)′ = 1√
x2−1

and easily calculate

∂4MK,j

∂j
= arcosh(

K − j

n− j
)×

(
2(K − n)√

(K − j)2 − (n− j)2
− arcosh(

K − j

n− j
)

)
.

We want to show that the second factor on the right-hand side is negative. We
use the following formulae and estimates:

arcosh(
K − j

n− j
) = log

K − j

n− j
+

((
K − j

n− j

)2

− 1

)1/2


= log
K − j

n− j
+ log

1 +

√
1−

(
n− j

K − j

)2
 ,

log

1 +

√
1−

(
n− j

K − j

)2
 ≥ log

(
1 +

√
1−

( n

K

)2
)

,

√
1−

( n

K

)2

> 1− n2

2K2
− n4

4K4
,

log

(
1 +

√
1−

( n

K

)2
)

>
1
2
− n4

4K4
for 2K ≥ 3n .

The negative of the second factor on the right-hand side of the partial derivative
of MK,j is therefore larger than

X(j) := log
K − j

n− j
+

1
2
− n4

4K4
− 2

K − n√
K2 − 2(K − n)j − n2
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The function X(j) is increasing with j since we compute

X ′(j) = (K − n)
(

1
(K − j)(n− j)

− 2(K − n)
(K2 − 2(K − n)j − n2)3/2

)
which is positive if we require K/n ≥ 1 +

√
2 because of

K − n ≤
√

K2 − 2(K − n)j − n2 .

Eventually, we need to show X(0) ≥ 0. We obtain

X(0) > log
K

n
+ 0.493− 2

√
1− n/K

1 + n/K
.

That lower bound for X(0) is easily seen to be positive for K/n ≥ 1 +
√

2. �
Putting things together we proved the following theorem.

Theorem 1 Let ε be a unit of F satisfying T2(ε) ≥ K and T2(ε−1) ≥ K for
some constant K with K ≥ 5n/2. If at most j conjugates of ε are of absolute
value 1 then we have

L(ε) ≥ n− j

4
arcosh2(

K − j

n− j
) .

Remark The number j of conjugates of a non-torsion unit ε which can be
of absolute value 1 depends on the number r2 of complex embeddings of F .
Clearly, we have j = 0 for r2 = 0 and j ≤ min{2r2, n− 2}.

For any totally real field E of degree n we can easily find a quadratic ex-
tension F/E of signature (2, n − 1) containing a unit ε with all n − 2 complex
embeddings of absolute value 1: Let a be an integral element in E such that
exacly on c onjugate is > 1 and all the others have the absolute value bounded
by 1. Such elements always exist by the Minkowski lattice theorem. Then
F = E(b) for b2 + ab + 1 = 0 is such an extension, and b is a unit with the
required properties.
Remark Salem numbers are also examples of units with at least one conjugate
of absolute value 1. One would expect that small Salem numbers occur in fields
with small regulators.

3 Lower Regulator Bounds

Let R be an arbitrary order of F . By Dirichlet’s Theorem we know that the
unit group UR of R, is the direct product of its torsion subgroup TUR, say
TUR = 〈ζ〉 of order w, and r = r1 + r2− 1 infinite cyclic groups. We denote the
generators of those – so-called fundamental units – by E1, ..., Er. The regulator
RegR is defined as

RegR = | det(cj log |E(j)
i |) | with cj =

{
1 for j ≤ r1

2 otherwise , 1 ≤ i, j ≤ r .
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Lower bounds for RegR can be obtained with the results of the previous
section. Let ε be a unit of R. If we express ε by the fundamental units of U(R):

ε = ζx0Ex1
1 · · ·Exr

r (xi ∈ Z)

then L(ε) becomes a positive definite quadratic form in x1, . . . , xr. It is not
very difficult to compute the determinant det(L) of that quadratic form (see [3,
Chap. 5, (6.9)], for example):

det(L) = 2−r2 n Reg2
R .

If M1, . . . ,Mr denote the successive minima of the quadratic form L then
Minkowski’s theorem yields

M1 · · ·Mr ≤ γr
r det(L).

The constants γr
r (Hermite’s constants) are only known up to r = 8. For larger

values of r we use the estimate

γr
r ≤ 2

π
Γ
(

1 +
n + 2

2

)2

.

Hence, lower bounds for M1, . . . ,Mr will provide a lower bound for RegR.
Determining good lower bounds for M1, . . . ,Mr is of course the crucial part of
this method. We want to use as many properties of R as we can, not only the
degree n of F and the discriminant of R. We choose a constant K ≥ (1 +

√
2)n

and compute the set

SK := {α ∈ R | T2(α) < K} ∪ {α ∈ K | α−1 ∈ R, T2(α−1) < K} .

Obviously, TU(R) is contained in in SK . Let us assume that SK also contains
k independent units (0 ≤ k ≤ r). We set, according to Theorem 1:

K∗ :=
n− j

4
arcosh2(

K − j

n− j
)

then

M∗
i =

min{K∗} ∪ {C | ∃ ε1, . . . , εi ∈ UR ∩ SK indep. with L(εi) ≤ C}
for 1 ≤ i ≤ k

K∗ for k + 1 ≤ i ≤ r

and finally

M̃i :=
n− j

4
arcosh2(

M∗
i − j

n− j
) .

The integer j is to be chosen in the interval [0, n − 2] as small as possible
(see the remark following Theorem 1). As a consequence of Theorem 1 we then
obtain
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Proposition 1 A unit ε ∈ UR satisfying T2(ε) ≥ M∗
i and T2(ε−1) ≥ M∗

i

satisfies L(ε) ≥ M̃i.

From this the following lower regulator bound is immediate:

Corollary 1 The regulator RegR of an order R of F satisfies

RegR ≥ (M̃1 · · · M̃r2r2n−1γ−r
r )1/2 .

4 Practical considerations

In order to use the bound as provided by Corollay 1, we need to choose a suitable
constant K ≥ (1 +

√
2)n depending on our field. In this discussion we assume

that a maximally independent set of units ε1, . . ., εr is known and we want to
compute the full unit group or show that our system is already maximal. This
entails:

1. Given a constant K, compute the set SK

2. Compute M∗
i and M̃i

3. Use Corollay 1 to compute a lower regulator bound Rl and utilize the
given set of units to compute an upper bound Ru.

4. For all primes p such that p ≤ Ru/Rl show that the given system of units
is p-maximal or find a new unit.

Using the Fincke-Pohst algorithm [3, Chap. 3, (3.15)], we first compute the set

TK := {x ∈ R | T2(x) ≤ K}

and then
SK = TK ∪ ({x−1 : x ∈ TK} ∩R).

Since the computation of a single element of TK takes O(n2) operations, we get
a (algebraic) complexity of O(n2#TK). Using for example [7, (VI, §2), Theorem
2] we immediately see that #TK = O(Kn). All other operations (computation
of (.)−1, the comparisons involved in the set operations) involved in step 1 are
also bounded by O(n2) if floating point operations of sufficiently high (but fixed)
precision are used.

The next step requires the computation of L(.) and (in)dependence test on
small sets of units. Since we assume that a maximally independent set of units
is already known, the tests can easily be reduced to (rational) linear algebra
and are individually bounded by O(n3).

Step 3 takes only a constant number of operations independently of K, thus it
remains to discuss step 4. Following the method outlined in [3, Chap. 5 (7.12)],
to proof p-maximality one needs to do some computations for each independent
unit of our given system, thus O(r) = O(n) operations per prime number where
the constants depend on the field. Each operation itself takes ??? operations,
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so that the total complexity is bounded by O(nR/log(R) for R := Ru/Rl.
Using the defintion of arcosh, we immediately obtain K∗ = O(log2 K) and
thus Rl = O(log2n K) which gives at most a complexity of O(log−2n K). Of
course, if our set of independent units is already contained in TK then Rl will
be independent of K, but in this case we already know a fundamental system
of units.

Combining the estimates, it is clear that K should be chosen as small as
possible as the complexity for the computation of SK dominates the running
time. On the other hand, in an actual implementation one needs to analyse
the overheads involved and determine reasonable choices for K experimentally,
depending on n, the given basis for R and the given system of independent
units.

In the next section we will give some examples illustrating the influence of
the choice for K on the total runtime.

5 Numerical Examples

The computations of the examples is presently carried out on an Intel Pentium
III with 600 MHz and 512 MB RAM under Linux 2.2.13-SMP.

Let us start with an counterexample to the bound in [3]: Using F := Q(α)
with α4 − α3 − 6α2 − 2α + 4 we get a contradicion for M∗ := 130. The set
SK contains two units ε1 := 2α3 − 5α2 − 5α + 5 and ε2 := ε−1

1 of length
T2(ε1,2) = 128.06... < 130 and logarithmic length 17.29.... Unfortunately, the
unit ε3 := α3 − 7α − 7 has length T2(ε3) = 130.06 > 130 with a smaller size in
the logarithm space: 11.77.... This leads to a regulator estimate of 10.63 which
is larger than the regulator of 10.09. The unit ε3 has two complex embeddings
of absolute value 1.

Next, we work in the field F := Q(α) with α6 − 114α4 + 48α3 + 3249α2 −
2736α − 19456 = 0. This is a totally real field with a large regulator, R =
580, 843.22... so that it is unlikely to have a complete system of independent
units in SK for any reasonable choice of K. The discriminant of F is 341923133 =
896654708577 of class number 1. In 1 we demonstrate the effect of K on the
regulator bound obtained. In this example, we let K run from 9 to 6000, giving
regulator estimates between 0.3 and 10, 100. Due to the size of the field, the
regulator estimate follows strictly the arcosh2 curve, thus large increments in K
result in only minor changes in the quality of the output. The second figure 2
displays for the same values of K, the time spend in steps 1 to 3. The total time
spend in step 4 is negligible for any K > 100. In our implementation ([2, 1]) we
use as K the length of the longest basis vector of a LLL reduced basis for R.
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Figure 1: lower bound vs. K
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Figure 2: time vs. K
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