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Abstract

In Algebraic Geometry smooth varieties are (in general) well-understood.
By contrast (or simply because of that) the objects of interest are often sin-
gular varieties. From the theoretical point of view a remedy for this situation
is the famous Theorem of Hironaka [8] on the resolution of singularities: If X
is a variety over a field of characteristic 0 then there always exists a smooth
variety X and a proper birational morphism 7 : X — X. So for proving
theorems and defining birational invariants, one can argue on X rather than
on X and finally transfer the result back to the singular variety. This the-
orem has been made constructive by Villamayor [10], Bierstone-Milman [3]
and others. There are also two implementations of the resolution algorithm
in Singular, one by Anne Friibis-Kriiger [6] and another by Gabor Bodnér
and the second author [4]. In principal this makes many theoretical results
algorithmic, but any algorithm relying on a resolution suffers from the high
computational complexity of the resolution process.

From the computational point of view it is not always necessary to de-
scribe the resolution completely. In the case of algebraic curves over a field
K series expansion have proved to be an important algorithmic tool. Here
the preimage of the singular locus w.r.t. a resolution of singularities is a
finite set of points. The idea is to describe the resolution by power se-
ries expansions that determine analytic (or formal) neighborhoods of these
points. If K has characteristic 0 Puiseux expansions can be used and the
Newton-Puiseux algorithm is implemented in many computer algebra sys-
tems including Magma, Maple and Singular. The latter system also con-
tains an implementation of Hamburger-Noether expansions [5], that provide
a similar tool in positive characteristic. Applications are for example the
computation of integral bases in the function field [9], the computation of
linear systems of divisors [7] and as a special case systems of adjoint curves
used for parametrization [2].

To our knowledge for higher dimensional varieties there is no similar tool
(at least no accessible implementation). The purpose of this talk is to present
such a tool for surfaces in IP’% and its implementation in Magma. This is
achieved by the following means.
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The analog to the Newton-Puiseux Theorem in the multivariate case is
the Theorem of Jung-Abhyankar. It states that if a variety is defined by
the vanishing of a quasi-ordinary polynomial (i.e. a monic polynomial s.t.
its discriminant defines a normal crossing divisor at the origin) then all
the roots of the polynomial can be expressed as multivariate fractionary
power series. These roots describe analytic isomorphisms from points in the
normalization to germs of toric varieties. Now the first step is to develop
an algorithm for the efficient computation and representation of these roots
in finite terms, see [1]. In other words the algorithm takes as input a quasi-
ordinary polynomial and produces finite representations of the series roots
that may be expanded later up to arbitrary precision.

The next step is to find an analogue to the finitely many places over the
singular points of an algebraic curve and their representation by Puiseux
series. Given a singular surface X we show how to compute a finite set
of embeddings k; : Kx — K;((t)) from the function field of the surface
into fields of Laurent series. Here K; is the function field of some algebraic
curve. This set has the property that there is a resolution 7 : X — X and
the following hold true:

e The preimage r; '(K;[[t]]) is isomorphic to the completion of the
local ring at a curve C C X that we call the center of ;.

e For every curve C in the m-preimage of the singular locus there is 4
s.t. C' is the center of ;.

Such a set of embeddings is not unique as in the case of algebraic curves,
but it should describe the singular locus reasonably well.

A brief sketch of the algorithm: Using the Noether normalization trick, we
understand the surface as a finite cover of the projective plane ]P’(%. Then we
compute an embedded resolution of the discriminant curve by point blow ups
and transform the surface accordingly. For determining the embeddings we
compute power series roots of the local defining equations in the above form.
We distinguish two cases: Over the generic points of irreducible curves of
the discriminant we use the normal Newton-Puiseux algorithm to find such
roots directly. Over the normal crossing locus of the discriminant we first
compute fractionary power series roots and then transform each of them
into finitely many series in the desired form.

An application is for example the computation of the sheaf of adjoint dif-
ferential forms over a singular surface X. This sheaf (resp. the pushforward
w.r.t. a birational morphism) is a birational invariant of a surface and cor-
responds to the sheaf of regular differential forms in the case of a smooth
surface. First tests with the algorithm show that it performs very well.
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