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1 Introduction

This document provides a terse summary of the new features installed in Magma for release
version V2.8 (July 31, 2001). Previous releases of Magma were: V2.7 (June 30, 2000),
V2.6 (November 8, 1999), V2.5 (July 7, 1999), V2.4 (December 3, 1998), V2.3 (January
30, 1998), V2.20 (April 18, 1997), V2.10 (October 14, 1996), V2.01 (June 21, 1996), and
V1.30 (March 5, 1996).

2 Summary

Documentation

• Handbook: There are 18 new chapters in the Handbook.

• Handbook: The Handbook now includes bibliographies for each chapter, and some
information concerning the algorithms used has been provided for a selection of the
functions.

• Help System: A new help system has been developed by Claus Fieker. The system is
html-based and allows the user to quickly access any Handbook entry via the usual
help request from within Magma. To access the new help system, the following line
should be placed in the user’s startup file:

SetHelpUseExternalBrowser(true);

Groups

• Permutation Groups: An algorithm for determining the maximal subgroups of a
permutation group is provided. This is applicable to any group for which the non-
abelian composition factors either have order less than 1.6×107 or have a permutation
representation of degree less than 32.

• Permutation Groups: The machinery for finding all conjugacy classes of subgroups
has been extended to a much larger class of groups. In particular, the former limita-
tion that the trivial Fitting quotient have order less than 216, 000 has been removed.
Variations are provided to find all conjugacy classes of subgroups satisfying some
condition.
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• Permutation Groups: The maximal subgroup algorithm is used as the basis for an
algorithm for determining all subgroups whose index is less than some given bound.
This is much more efficient than finding all subgroups and selecting those which
satisfy the index condition.

• Permutation Groups: A new algorithm for finding the automorphism group of a
permutation group is also included. A variation may be used to determine whether
two permutation groups are isomorphic.

• Matrix Groups: New algorithms for computing the conjugacy classes of elements and
the maximal normal p-subgroup in a finite matrix group have been installed.

• Matrix Groups: Several functions for analysing the action of a matrix group over a
finite field on subspaces of the underlying natural vector space have been introduced.
These functions are designed to handle situations where the orbits may be large.

• Finitely Presented Groups: Much of the basic infrastructure for finitely presented
groups has been redesigned, yielding improved performance and greatly increased
applicability of key functions for fp-groups.

• Finitely Presented Groups: New versions of the algorithms for coset enumeration,
simplification of presentations by Tietze transformations, Reidemeister–Schreier re-
writing and computation of p-quotients have been installed. An interactive coset
enumeration facility is now available.

• Finitely Presented Groups: The function Order for finitely presented groups has been
revised and now uses a much more sophisticated strategy for determining the order
of a (finite) group or for proving that the group is infinite.

• Polycyclic Groups: The functionality of the new category of polycyclic groups in-
troduced in V2.7 has been greatly increased. In particular, algorithms have been
implemented that compute the following: a normal series where the factors are ei-
ther elementary abelian p-groups or free abelian groups; the Fitting subgroup; the
Fitting series, the upper central series; the centre. For the case of nilpotent groups,
functions that compute normalizers and centralizers have been installed.

• p-Groups: New implementations by Eamonn O’Brien of an algorithm for computing
the automorphism group of a p-group and also an algorithm for generating p-groups
have been installed. The new p-group generation implementation overcomes problems
associated with file handling that affected the previous implementation.

• Generic Abelian Groups: A new category has been created for generic (finite) abelian
groups. The creation of a generic abelian group is a new feature which allows the
user to create an abelian group over any domain given that an identity and a group
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operation have been defined. Features include finding the order of an element, de-
termining a presentation from generators, and computing the discrete logarithm of
an element.

• Subgroups of PSL(2, R): A package for working with congruence subgroups of
PSL(2, R) has been developed by Helena Verrill. The package includes graphics
facilities which allow the user to produce pictures of fundamental domains.

• Databases: Several new databases of groups have been created, e.g. for perfect groups,
almost simple groups, rational maximal finite matrix groups and finite quaternionic
matrix groups.

Groups of Lie Type

• Root Datum: A data type has been introduced for root datum of groups of Lie type.

• Coxeter Groups: The module for Coxeter groups has been considerably expanded.

• Lie Groups: A data type has been introduced for groups of Lie type. The basic group
operations have been implemented over any field.

Basic Rings

• Integers: An experimental implementation of the number field sieve (NFS) for fac-
toring large integers is now available.

• Integers: The Factor database maintained by Richard Brent has been updated. It
now contains 221, 188 factors f of integers an ± 1, where a < 10000, n < 10000, and
f > 109.

• Univariate Polynomial Rings: Polynomials over the integers or rationals are now
factored by the new algorithm of Mark van Hoeij. The search for the correct com-
bination of modular factors (which has exponential worst-case complexity in the
standard Berlekamp–Zassenhaus algorithm) is performed by van Hoeij’s algorithm,
which efficiently finds the correct combinations by solving a Knapsack problem via
the LLL lattice-basis reduction algorithm.

Extensions of Rings

• Galois Rings: Basic facilities for computing with Galois rings have been implemented.

• Number Fields: Algebraic number fields and their orders have been substantially
revised in Magma V2.8. A new field type has been created for the field of fractions of
an order of a number field. More functionality has been provided for both absolute
and relative fields and orders.
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• Number Fields: Factorization of univariate polynomials defined over number fields
has become enormously more efficient through use of the van Hoeij ideas. It is now
possible to factor a difficult degree 15 polynomial over a degree 15 extension of Q in
a few seconds.

• Number Fields: Multi-step relative extensions are now fully supported with most
operations for absolute extensions generalized for this situation. In particular, fac-
torization and integral closure are now supported for relative extensions.

• Number Fields: Some restrictions on the creation of number fields (orders) have
been removed. Thus, it is now possible to create a field or order using a non-monic
polynomial. Further, it is possible to construct non-simple and linear extensions.

• Number Fields: Highly efficient arithmetic has been implemented for residue class
rings. In addition, the calculation of unit groups of such rings is supported at least
for quotients of absolute maximal orders.

• Number Fields: It is now possible to form the completion of a number field at a
(finite) prime.

• Number Fields: Code implemented by Claus Fieker computes the p-Selmer group at
a list of primes.

• Number Fields: Initial machinery has been provided for class field theory. In partic-
ular, a new type for abelian fields has been provided. It is now possible to construct
ray class groups and class fields based on them (i.e. in terms of defining equations).

• Number Fields: It is now possible to compute the relative Galois group and relative
subfields of a one-step relative extension of Q.

• Quadratic Fields: Quadratic fields have been redesigned so that they are now number
fields with the addition of some special code implementing fast algorithms peculiar
to quadratic fields. Thus, for the first time all number field operations are supported
for quadratic fields.

• Cyclotomic Fields: Cyclotomic fields have been redesigned so that they are now
number fields with the addition of some special code implementing fast algorithms
peculiar to cyclotomic fields. Thus, for the first time all number field operations are
supported for cyclotomic fields.

• Function Fields: Machinery for constructing and working with differentials has been
introduced. It is possible to compute the space of holomorphic differentials for a
given divisor. Other operations include computing the valuation of a differential at
a place, computing the residue of a differential at a place of degree 1 and working
with higher differentiations.
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• Function Fields: A function that determines the sequence of Weierstrass places has
been developed. Related functions compute the sequence of global gap numbers of a
divisor or the sequence of gap numbers of a divisor at a place of degree 1.

• Function Fields: The divisor class group of a global function field may be computed
using an algorithm and implementation due to Florian Heß. This also allows other
related information to be determined: e.g., unit group, S-class group, S-units and
S-regulator for a finite set of places S.

• Function Fields: Given the elliptic function field E : y2+xy+x3+ax2+b defined over
GF (qn), a function is provided that computes a hyperelliptic function field in the Weil
restriction of E over GF (q). This feature is of particular interest to cryptographers.

• Function Fields: A generic algorithm is provided for the factorization of univariate
and multivariate polynomials over function fields.

• Function Fields: The Galois group and lattice of subfields may be found for a function
field using code implemented by Katharina Geißler.

Commutative Algebra

• Ideal Theory: It is now possible to compute Gröbner bases of ideals of polynomial
rings defined over Euclidean rings (including the important case of the ring Z). Such
Gröbner bases are constructed by an extension of Jean-Charles Faugère’s F4 algo-
rithm which uses sparse linear algebra (algorithm due to Allan Steel). Many of the
standard functions provided for ideals in polynomial rings defined over fields are now
generalized to ideals in polynomials rings defined over Euclidean rings.

Linear Algebra and Module Theory

• Matrices: Several new advanced algorithms for matrices over Z or Q have been imple-
mented (and more will follow in the future). The new algorithms are for computing
determinants, characteristic polynomials and minimal polynomials.

• Modules over Orders: Modules over orders are now supported.

Algebraic Geometry

• Schemes: The algebraic geometry types together with their basic functionality have
been moved into the kernel. This includes the integration of many of the specialised
curve types such as elliptic and hyperelliptic curves. This significantly increases the
power of the geometry types, allowing the user to apply the functionality of both a
specialised curve type and the general scheme type to a single object. The change also
makes available many generic constructors and standard set and sequence operations,
which were previously not available for the geometry types.
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• Schemes: Maps between schemes have been enhanced with the provision of new
constructors and the ability to calculate images and pullbacks available in more
circumstances. Maps may now be defined between actual schemes now rather than
just between affine or projective spaces.

• Curves: Plane curves have been tied very closely to the function field machinery
in Magma. The result is that computations with divisors and their Riemann–Roch
spaces can be made entirely in the geometric context. The applications include: gap
numbers, canonical embeddings of curves, class group computation over finite fields,
constructions of geometric codes from curves and many other standard methods in
the geometry of curves.

• Curves: A new facility for computing with plane conic curves has been written. Its
major feature is an implementation of a new algorithm by John Cremona (Notting-
ham) to find points with reduced coordinates on conics defined over the rational
numbers. This implementation is very fast, improving on Cremona’s initial test tim-
ings.

• Elliptic Curves: Elliptic curves are now scheme types and inherit all of the ap-
propriate scheme functionality. In particular, all of the machinery for divisors and
differentials now applies to elliptic curves. Subgroup schemes of elliptic curves are
now also schemes. John Cremona’s database of elliptic curves has been updated to
conductor 10, 000.

• Hyperelliptic Curves: Machinery for computing the automorphism group of a hyper-
elliptic curve has been implemented by Michael Stoll. Pierrick Gaudry has imple-
mented a number of methods for counting points on the Jacobian of a hyperelliptic
curve. These include the Schoof algorithm for a genus 2 curve. Code for determin-
ing Igusa invariants has been provided by Everett Howe while Pierrick Gaudry has
implemented an algorithm for constructing a genus 2 curve from the Igusa invariants.

• Modular Curves: A package for modular curves has been developed by David Kohel
of the Magma group. A modular curve is defined in terms of standard affine modular
equations which are stored in precomputed databases. The possible model types are
“Atkin”, “Canonical”, and “Classical”.

• Modular Forms: A package for modular forms developed by William Stein is now
included. Facilities include the computation of a basis of modular forms on Γ1(N),
the computation of all newforms of given level, and the decomposition into Eisenstein,
cuspidal, and new subspaces.

• Brandt Modules: A package for Brandt modules has been developed by David Kohel.
Facilities include the construction of a Brandt module on the left ideal class of a
definite order in a quaternion algebra over Q, the decomposition of a Brandt module
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under the action of Atkin–Lehner and Hecke operators and the construction of the
Eisenstein and cuspidal subspaces.

• K3 Surfaces: A database of K3 surfaces has been added. It contains characteristic
data for K3 surfaces embedded in weighted projective spaces in codimension up to 4.
The functions used to create the database are also included so that users can extend
the database or create similar databases.

• Handbook: All geometric chapters of the Handbook have undergone major revision.
Many more examples have been included, some of which are extended calculations
which illustrate different parts of the new geometry packages working together.

Incidence Structures

• Graphs: The nauty program due to Brendan McKay for finding automorphisms in
graphs has been updated to the latest version (2.0) and its user interface within
Magma has been enhanced. This new version of nauty is often much faster than the
previous version installed within Magma.

• Graphs: A database of strongly regular graphs due to Brendan McKay et al is now
available.

• Graphs: A program for the orderly generation of graphs satisfying a range of condi-
tions, written by Brendan McKay, is now accessible from within Magma.

Coding Theory

• Codes over Fields: Magma V2.8 incorporates a database containing constructions of
the best known linear codes over F2 of length up to 256. The codes of length up to
36 are optimal. The database is complete in the sense that it contains a construction
for every set of parameters. Thus the user has access to 33, 152 best-known binary
codes. Similar databases for other small fields will be added in the near future. The
implementation of this database has been a joint project with Markus Grassl.

• Codes over Fields: Functions are provided to construct Algebraic–Geometric codes.

• Codes over Rings: Magma includes facilities for linear codes defined over Z4 for the
first time.

Optimization

• Linear Programming: Basic facilities are provided for solving linear programming
and integer linear programming problems.
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3 Documentation

The Handbook now has bibliographies for each chapter, and much more information con-
cerning the algorithms used has been included in several places.

New chapters in the Handbook for V2.8 are:

– p-Groups

– Generic Abelian Groups

– Automorphism Groups of Groups

– Subgroups of PSL(2, R)

– Databases of Groups

– Root Data for Lie Theory

– Groups of Lie type

– Galois Rings

– Ideal Theory and Gröbner Bases

– Modules over Orders

– Rational Curves and Conics

– The K3 Database

– Modular Curves

– Modular Forms

– Brandt Modules

– Linear Codes over Finite Fields

– Linear Codes over Finite Rings

– Linear Programming

The Categories Overview Document (catv28.dvi) has also been greatly expanded.
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4 Groups

4.1 General Groups [HB 17]

Changes:

– The function FPGroup(G:StrongGenerators:=true) is replaced by FPGroupStrong(G). The former
will be withdrawn in a future release, so change your code now!

– The function ExtraSpecialGroup has been extended to return both isomorphism types of extra-
special group of order pn.

– The process that produces pseudo-random elements of a group from its generators has been modified
to use product replacement with an accumulator. This means two multiplications are required for
each step, but results in elements that more closely approximate elements chosen uniformly at
random.

– The IsConjugate function has been extended to sequences of group elements (thus giving another
test for inner automorphisms).

New Features:

– The database of perfect groups compiled by Holt and Plesken has been converted into a new style
database.

– A database containing almost simple groups with socle order up to 16 million is available. This
database contains automorphism group and maximal subgroup information.

4.2 Permutation Groups [HB 18]

New Features:

– Major improvements to the techniques for computing subgroups using the Subgroups family of
functions have been introduced. It is now possible to compute subgroups in very much larger
groups than before.

– A new very powerful algorithm for finding maximal subgroups in the case of a non-soluble group
has been installed. This algorithm, developed by Derek Holt, reduces the problem of finding maxi-
mal subgroups to that of knowing the maximals of the non-abelian composition factors (and their
automorphism groups).

– The ability to compute maximal subgroups is used as the basis of an algorithm to compute subgroups
of small index in a large permutation group (function LowIndexSubgroups).

– The function AutomorphismGroup determines the full automorphism group of a permutation group.

– Isomorphism of permutation groups may be tested using the function IsIsomorphic. Note that
this tests for abstract group isomorphism, not permutation isomorphism.

– The function OrbitRepresentatives has been introduced to determine just the orbit lengths and
representatives; it is more space-efficient than the general-purpose Orbits.

– The new function IsInnerAutomorphism has been provided.
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– The functions ElementaryAbelianQuotient, pQuotient and NilpotentQuotient are now available
for permutation groups.

Bug fixes:

– A bug in DerivedSeries has been fixed. The bug was responsible for incorrect results produced
by IsSimple and some other functions.

4.3 General Matrix Groups [HB 19]

Changes:

– The database known as glnzgps has been withdrawn as it is superseded by the database of maximal
finite subgroups of GL(n,Q).

New features:

– A very efficient algorithm has been implemented for computing the conjugacy classes of elements
in a finite matrix group.

– The maximal normal p-subgroup of a finite matrix group may be found using the new function
pCore.

– The function ChangeRing may now be applied to an infinite group. For example, it may be used to
change the ring of an infinite group over the integers to a finite group over GF(2), say.

– A restricted version of LowIndexSubgroups developed by Leedham-Green and O’Brien is now avail-
able for matrix groups.

– The new function ElementaryAbelianQuotient returns the p-elementary abelian quotient of a
permutation group for a given prime p.

– A database of maximal finite subgroups of GL(n,Q) of degree up to 31 constructed by G. Nebe has
been installed (RationalMatrixGroupDatabase).

– A database of the finite absolutely irreducible subgroups of GLn(D) where D is a definite quaternion
algebra whose centre has degree d over Q and nd ≤ 10 has been installed. This collection is due to
G. Nebe.

Bug fixes:

– Bug fixes have been made to the functions CosetTable, PCGroup, ClassMap and IsFinite.

– Errors in the generators for two exceptional groups of Lie type, namely E6 and F4, have been
corrected. The errors were discovered by G. Malle.
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4.4 Matrix Groups over Finite Fields [HB 19]

New features:

– The function IsTensorInduced has been introduced which decides whether or not a matrix group is
tensor-induced. It replaces and upgrades IsSymmetricTensorProduct which has been withdrawn.
The related functions SymmetricTensorBasis and SymmetricTensorPermutations have been re-
named TensorInducedBasis and TensorInducedPermutations respectively.

– An optional argument has been added to IsPrimitive which allows one to search for certain block
sizes only; a similar argument added to IsTensor allows one to search for factors of particular
dimensions.

– The function OrbitsOfSpaces(G, k) has been introduced which constructs lengths and orbit rep-
resentatives for the k-dimensional spaces of the natural vector space under action of G, a matrix
group defined over a prime field.

– The function NumberOfFixedSpaces(g, k) has been introduced which determines the number of
k-dimensional subspaces of the natural vector space fixed under the action of g ∈ GL(d, q).

– The function StabiliserOfSpaces has been introduced which constructs the subgroup of GL(d, q)
which stabilises a sequence of subspaces of the natural vector space.

– The function EstimateOrbit(G, U), which estimates the size of the orbit of the subspace U under
action of G, has been introduced.

– The function ApproximateStabiliser(G, A, U) has been introduced which constructs, using a
random approach, a subgroup of the stabiliser of the subspace U under the induced action A of G.

– The permitted arguments to ExteriorSquare now include a matrix group.

– The database of irreducible soluble groups has been converted into a new style database.

4.5 Finitely Presented Groups [HB 20, 21]

Changes:

– Coercion of elements of a finitely presented group into a subgroup defined by a set of generating
words is now possible to some limited extent. Words in the supergroup which are freely equivalent
to one of the defining generators of the subgroup or the inverse of such a generator can be coerced.

– Coercing elements of a finitely presented group into a subgroup defined in terms of Schreier gener-
ators is now possible for both unsimplified and simplified presentations.

– Known information about normality of subgroups is stored more consistently, yielding a better
performance of functions like IsNormal, Normaliser, NormalClosure and Core. The caching of
coset tables has been improved in general.

– The functions computing the normal closure of a subgroup were revised and now are able to produce
answers in more cases.

– Several functions can now handle finitely presented groups which do not have a presentation as-
signed, e.g. subgroups defined by a coset table. Among them are GModule, GModulePrimes, subgroup
constructor and normal closure constructor.
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– The functions for the representation theory of fp-groups have been revised completely. The new
functions GModulePrimes and GModule are much faster than the old versions and are less restrictive
with regard to the maximal size of possible computations. The function GModule now returns — like
the corresponding functions for other categories of groups — an epimorphism onto the constructed
module.

– Some bugs and memory leaks have been fixed. In particular, the system is more tolerant against
invalid user input.

– A new version of Éamonn O’Brien’s p-quotient algorithm has been installed. In particular, the
interactive computation of p-quotients has been improved considerably in this version.

– A new version of George Havas’ coset enumerator ACE has been installed. Controlled by a wide
range of parameters, it enables the user to exert more precise control over the Todd-Coxeter pro-
cedure than the old version did. This set of parameters is accepted by various functions which
indirectly invoke a coset enumeration, e.g. Order, Index etc. All functions can handle the old
parameters, ensuring backwards compatibility. A global set of parameters, controlling coset enu-
merations invoked indirectly, e.g. by computing intersections of subgroups, has been introduced.
This provides improved performance for many standard operations on finitely presented groups.

– The functions for simplifying a presentation using Tietze transformations have been revised com-
pletely. The new version uses an improved simplification strategy and allows more control about the
simplification procedure by providing an extended set of parameters. Functions SetOptions and
ShowOptions have been introduced to control the parameter settings of a simplification process.
The new function SimplifyLength allows partial simplification of a presentation. The elimination
of generators is stopped, if further eliminations start to increase the total length of the presentation.
This not only may save time, but the resulting presentations in general are more suitable for coset
enumeration.

– The functions Simplify and Rewrite now return an isomorphism from the original group onto the
constructed presentation. The group returned is created as a subgroup of the original group, which
allows coercing elements from the original group into the new group.

– The function SchreierGenerators now by default applies a heuristic method for removing redun-
dant generators. (This feature can be turned off.) Since this reduction is also heavily used in
functions internally constructing a generating set of a group, the performance of several functions
of the module is thereby improved.

– The function Order has been revised completely. New strategies for computing the order of a group
or proving its infiniteness are applied. The new function more frequently completes successfully and
is in general faster than the old version.

New features:

– Interactive coset enumeration based on the ACE program of Havas.

– For homomorphisms with a domain of type GrpFP, an attempt is made to compute the kernel, when
the kernel is accessed directly or indirectly as a consequence of another function call. This is done by
trying to construct a regular permutation representation of the image and, if successful, defining a
subgroup of the domain using the obtained coset table. If the kernel can be constructed, computing
preimages of subgroups of the codomain is possible.

– The new function BraidGroup returns the braid group on a given number of generators as a finitely
presented group.

– The new functions AbelianQuotient and ElementaryAbelianQuotient return the abelian quotient
and the p-elementary abelian quotient for a given prime p, respectively, of a finitely presented group.
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– The new function DihedralGroup can now also construct the infinite dihedral group.

– The new function PresentationLength returns the total length of the relators of a presentation.

– The new function ReduceGenerators tries to obtain a presentation of a group on fewer generators.
It is particularly useful for eliminating redundant generators in subgroups of finitely presented
groups obtained as preimages under a homomorphism.

Bug fixes:

– A bug in Darstellungsgruppe has been fixed, which was responsible for incorrect answers for
groups having an infinite abelian quotient.

4.6 Polycyclic Groups [HB 22]

Changes:

– A new symbolic collector with a much better complexity in the exponents occurring in element
vectors has been installed. The speed up can reach several orders of magnitude in typical examples
and virtually all computations with polycyclic groups benefit from this improvement.

– The limitation that exponents in a polycyclic presentation and exponents in element vectors be
restricted to values less than 230 has been removed.

– A function PresentationIsSmall has been added, which enables the user to check whether big
integer arithmetic actually is required for a polycyclic presentation. This may be relevant for some
category transfers.

– The constructor PolycyclicGroup now returns a group in the category GrpPC or a group in the
category GrpGPC, depending on the presentation passed and on the values of a parameter. This
simplifies the construction of polycyclic groups and provides a common interface for the closely
related group categories GrpPC and GrpGPC.

– The category transfer functions FPGroup and PCGroup now check for “small presentations”, since
big integers are not supported by the target categories.

– Homomorphisms with a domain of type GrpGPC are now checked to be well-defined. (This feature
can be turned off.)

– The (trivial) kernels of homomorphisms returned by category transfer functions are now properly
embedded in the domain.

– The functions CosetKernel and CosetAction (if the kernel of the coset action is actually assigned
to a variable) now in all cases successfully compute the kernel of the coset action.

– The kernels of homomorphisms with a domain of type GrpGPC are no longer computed during the
construction of the map, but are computed only when the kernel is actually accessed. This speeds up
definitions of homomorphisms and several functions returning or internally using homomorphisms.

New features for general polycyclic groups:

– For homomorphisms with a domain of type GrpGPC, an attempt is made to compute the kernel when
the kernel is accessed directly or indirectly as a consequence of another function call. Computing
kernels currently is possible for codomains of the following data types: GrpGPC, GrpPC, GrpPerm and
GrpAb, as well as for codomains of the type GrpMat, provided that the image is finite.

As a consequence, computing preimages of subgroups of the codomain is now possible in these
situations.
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– The new function FreeNilpotentGroup returns the free nilpotent group of given rank and class as
a polycyclic group.

– FreeAbelianGroup returns the free abelian group of given rank as a polycyclic group.

– The new function ElementaryAbelianGroup returns the elementary abelian group of order pn for
a given prime p and a given integer n as a polycyclic group.

– The functions AbelianQuotient, AbelianQuotientInvariants, ElementaryAbelianQuotient and
FreeAbelianQuotient provide information about the structure of abelian quotients of a polycyclic
group.

– The new functions FittingSubgroup, FittingSeries and FittingLength compute the Fitting
subgroup, the Fitting series and the length of the Fitting series of a polycyclic group.

– The new function UpperCentralSeries computes the upper central series of a polycyclic group.

– The function Centre computes the centre of a polycyclic group.

– EFASeries computes a normal series for a polycyclic group, the factors of which are either elemen-
tary abelian p-groups or free abelian groups (elementary or free abelian series; efa-series).

– The new function SemisimpleEFASeries computes a normal series for a polycyclic group G, the
factors of which are either elementary abelian p-groups which are semisimple as Fp[G]-modules or
free abelian groups which are semisimple as Q[G]-modules (semisimple efa-series).

– The new functions EFAModules and SemisimpleEFAModules return the sequence of Fp[G]- or Z[G]-
modules determined by the action of G on the factors of an efa-series of G or on the factors of a
semisimple efa-series of G, respectively.

– EFAModuleMaps and SemisimpleEFAModuleMaps return a sequence of maps from the (non-trivial)
subgroups of an efa-series of G or of a semisimple efa-series of G, respectively, onto the Fp[G]-
or Z[G]-modules determined by the action of G on the factors of the efa-series or the semisimple
efa-series, respectively.

– Four new functions GModule compute the R[G]-module induced by the action of a polycyclic group G
on the maximal abelian quotient (R = Z) or the maximal p-elementary abelian quotient (R = Fp),
respectively, of a normal subgroup or of a section of G. The new function GModulePrimes computes
the set of primes for which the R[G]-module induced as described above is non-trivial and the
dimensions of the corresponding R[G]-modules.

New features for nilpotent polycyclic groups:

– Two new functions Centraliser compute the centraliser of an element and of a subgroup of a
nilpotent polycyclic group.

– The new function Normaliser computes the normaliser of a polycyclic group in another polycyclic
group. This function requires the existence of a nilpotent covering group.

– The new function IsSelfNormalising tests whether a subgroup of a nilpotent polycyclic group is
self-normalising in the supergroup.

– Two new functions IsConjugate test whether two elements or two subgroups, respectively, of a
nilpotent covering group are conjugate under the action of a subgroup. If so, a conjugating element
is computed.

Bug Fixes:

– Some bugs and memory leaks have been fixed. They involve intersection of subgroups, consistency
check for presentations, natural epimorphism for quotients, IsCyclic and AbelianGroup.
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4.7 Finite Soluble Groups [HB 23]

New Features:

– A function for computing normal complements (NormalComplements) has been implemented.

– The functions ExtGenerators (G, U) and HomGenerators (G, U) have been introduced to con-
struct explicit generators for Ext (G/G′, U), respectively Hom (H2(G), U), as cocyclic matrices
where U is abelian.

– The function RepresentativeCocyles has been introduced for computing representative cocycles
from G to abelian U as cocyclic matrices.

– The new functions CentralExtension and CentralExtensions return central extensions of U by
G determined by cocyclic matrices.

– The function CentralExtensionProcess (G, U) has been introduced for creating a process for
forming all central extensions of abelian U byG. Related functions are NextExtension and IsEmpty.

4.8 Finite p-groups [HB 24]

A new version of the p-quotient algorithm has been installed, and various bugs related to
the p-quotient process have been fixed.

The code to construct the standard presentation of a p-group, the automorphism group
of a p-group, and to generate descriptions of p-groups has been completely replaced. Much
of the existing C code for these computations has been withdrawn and replaced by a package
of Magma language functions. The interfaces for these functions have been significantly
modified and (hopefully) simplified. Many of the problems in the use of these functions
which were related to external file handling should now disappear.

Changes:

– The arguments for GeneratepGroups have changed. Many of the optional arguments are no longer
supported. The function Descendants has been introduced which constructs the descendants [cer-
tain central extensions] of a p-group.

– The input argument for the function StandardPresentation is now restricted to GrpPC; inputs of
type GrpFP are no longer supported.

New Features:

– The function StartNewClass has been introduced which is used to inform the pQuotientProcess

that the user is about to start a new class computation.

– The function pCoveringGroup has been introduced which constructs the p-covering group for a
p-group.

– The range of application of AutomorphismGroup has been significantly extended.

– The function ClassTwo has been introduced which counts precisely the number of p-class 2 p-groups
of various orders.

– The function UnipotentStabiliser, given as input a unipotent subgroup G of GL(d, F ) and U a
subspace of the natural vector space, determines the stabiliser in G of U .
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– The function OrderAutomorphismGroupAbelianPGroup computes the order of the automorphism
group of an abelian p-group.

– The function NumberOfSubgroupsAbelianPGroup has been introduced which computes the number
of subgroups of an abelian p-group.

4.9 Generic Abelian Groups (New) [HB 25]

– A generic (finite) abelian group can be created (using GenericAbelianGroup) over any domain
provided that an identity and a group operation have been defined.

– Once created one can compute the structure of the group. This is possible if the order of the group
is known beforehand. However, it is also possible to compute the structure of the group from a
user-supplied set of generators.

– Standard functions for creating subgroups and/or p-Sylow subgroups are provided.

– Standard element operations like computing the order or the discrete logarithm of an element are
also provided.

– It is also possible to compute the representation of any group element in terms of a given set of
generators of the group.

4.10 Finitely Generated Abelian Groups [HB 26]

New features:

– The new functions AbelianQuotient and ElementaryAbelianQuotient return the abelian quotient
and the p-elementary abelian quotient for a given prime p.

4.11 Subgroups of PSL(2, R) (New) [HB31]

The group GL+
2 (R) of 2 by 2 matrices defined over R with positive determinant acts on the

upper half complex plane H = {x ∈ C|Im(x) > 0}} by fractional linear transformation:(
a b
c d

)
: z 7→ az + b

cz + d
.

Any subgroup Γ of GL+
2 (R) also acts on H. A fundamental domain for the action of Γ

is a region of H∗ containing a representative of each orbit of the action. Magma contains
a package written by Helena Verrill for working with H∗ and with congruence subgroups
and their action on H∗. The subgroups of PSL2(Z) currently allowed are those of the form
Γ0(N), Γ1(N), Γ(N), Γ1(N), Γ0(N), and intersections of these groups. The package allows
the computation of generators for congruence subgroups, and various other information,
such as coset representatives.

Features:

– Computation of generators of congruence subgroups
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– Coset representatives for a subgroup of finite index in PSL2(Z)

– Construction of cusps, cusp widths, and elliptic points of congruence subgroups

– Farey symbols for congruence subgroups

– Action of elements of PSL2(R) on the upper half complex plane

– Determination of vertices of a fundamental domain for the action of a congruence subgroup

– Equivalence of points under the action of a congruence subgroup

– Graphics: postscript output of pictures of fundamental domains, points and geodesics, and polygons
with geodesic edges (all on the upper half complex plane)
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5 Groups of Lie Type

5.1 Root Datum for Groups of Lie Type (New) [HB33]

A data type for root datum has been implemented by Don Taylor and Scott Murray.

5.1.1 Cartan matrices and Cartan types

– Creation of Cartan matrices.

– Identification of Cartan matrices.

– Printing Dynkin diagrams.

– Predicates: IsIrreducible, IsCrystallographic, IsSimplyLaced.

– Computing the vectors in a root system.

5.1.2 Creating Root datum

Any semisimple root datum may be constructed (adjoint, simply connected and everything
in between). We plan to add facilities for more general reductive root data in a future
release.

5.1.3 Operators on Root Datum

– Basic access functions: (co)root space, simple (co)roots, Cartan matrix, number of positive roots,
rank, dimension, Cartan type

– Computing isogeny group

– Dynkin diagram

– Roots are stored in the standard ordering, and are accessed by specifying their position in this
order. Also computed in this manner are: coroots, reflection matrices of roots and coroots, and the
action on the roots.

– Duals, root subdatum, direct sums.

– Properties: Irreducible, crystallographic, simply laced, adjoint, simply connected.

5.1.4 Related Invariants

– Root norms and root heights.

– Killing forms and dual Killing forms.

– The string through one root in the direction of another.

– The constants defined in Carter for constructing Lie algebras and groups of Lie type: p, q, A (the
Cartan integer), N , M , C, η.
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5.2 Coxeter Groups [HB34]

Finite Coxeter groups are implemented as a subclass of permutation groups so that they
inherit all the operations for permutation groups as well as having many specialized func-
tions. This module was implemented by Don Taylor and Scott Murray.

– Cartan matrix corresponding to a given Dynkin diagram

– Construction of a Coxeter group from a root datum or Cartan matrix

– Dynkin diagram of a Cartan matrix or Coxeter group

– Root datum for a Coxeter group

– Element as a reduced word in the standard generators

– Element of maximal length

– Unique long (short) root of greatest height

– Long word

– Short root of maximal height

– Reflections in Coxeter group

– Reflection subgroup

– Reduced representatives for cosets of the reflection subgroup

– Actions on roots and co-roots

– Coxeter group as a real reflection group

– Coxeter and parabolic subgroups; Transversals

– Braid group, pure braid group and Coxeter group presentation

5.3 Finite Groups of Lie Type (New) [HB35]

We have implemented code for computing in non-groups of Lie type, with elements repre-
sented by their Bruhat decomposition. These groups can be defined over any Magma ring.
The twisted groups will be implemented in a future release, but for now it is possible to
compute with them by treating them as subgroups of the non-twisted groups.

The standard and regular (adjoint) representations for each group may be computed.

– Generators for all classical families of groups of Lie type over a finite field.

– Generators for all exceptional families of groups of Lie type over a finite field.

– Killing form of the Cartan algebra associated with a given Weyl group

– Root elements

– Fundamental roots and their negatives of a simple Lie algebra of given type and rank

– Lie algebra of a Chevalley group as a structure constant algebra

– Adjoint action

– Graph automorphism of a Coxeter group

– Degree of a representation with specified weight

– The BN-pair for a Chevalley group
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6 Basic Rings

6.1 Integer Ring [HB 40]

New features:

– An experimental implementation of the number field sieve (NFS) is now available.

– The Cunningham database of factorizations of the form an ± 1 due to Brent and te Riele has been
updated to the latest version (April 11, 2001).

– The function KroneckerSymbol(x, y) now works for y = 0, and matches the definition given in
Cohen for y < 0.

– Many of the basic functions for orders of number fields have been extended to include the ring of
integers.

Bug fixes:

– Raising −∞ to the power of −∞ now returns 0 instead of an error.

6.2 Real and Complex Fields [HB 43]

Bug fixes:

– A bug has been fixed that caused a crash when negating real numbers after the default real field
had been changed.

– The function Abs now works correctly.

6.3 Univariate Polynomial Rings [HB 44]

Polynomials over the integers or rationals are now factored by the exciting new algorithm
of Mark van Hoeij (see the Handbook for details and references). The search for the
correct combination of modular factors (which has exponential worst-case complexity in
the standard Berlekamp–Zassenhaus algorithm) is now performed by van Hoeij’s algorithm,
which efficiently finds the correct combinations by solving a Knapsack problem via the LLL
lattice-basis reduction algorithm.

van Hoeij’s new algorithm is much more efficient in practice than the original lattice-
based factoring algorithm proposed by Lenstra et al.: the lattice constructed in van Hoeij’s
algorithm has dimension equal to the number of modular factors (not the degree of the
input polynomial), and the entries of the lattice are very much smaller. Many polynomials
can now be easily factored which were out of reach for any previous algorithm (for example,
the Swinnerton–Dyer polynomials).

New features:

– The function Polynomial allows the user to create a univariate polynomial without first having to
create its parent polynomial ring.
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– Automatic coercion has been improved to allow the case where a polynomial over a finite field is
added to a rational constant.

– Factorization of polynomials over Z or Q has been greatly improved by the van Hoeij combination
algorithm. Factorization over algebraic number fields has also been improved as a result.

– New function SwinnertonDyerPolynomial(n) to create the n-th Swinnerton-Dyer polynomial.

– New function EqualDegreeFactorization to compute the equal-degree factorization of a polyno-
mial over a finite field which is known to be a product of distinct degree-d irreducibles alone.

6.4 Rational Function Fields [HB 46]

New features:

– The rational function field type supports the algebraic function fields signatures, see Section 7.4.

6.5 Galois Rings (New) [HB 48]

Magma now provides facilities for computing with Galois rings. The features are currently
very basic, but advanced features will be available in the near future, including support
for the creation of subrings and appropriate embeddings, allowing lattices of compatible
embeddings, just as for finite fields.

Because of the valuation defined on them, Galois rings are Euclidean rings, so they
may be used in Magma in any place where general Euclidean rings are valid. This includes
many matrix and module functions, and the computation of Gröbner bases. Linear codes
over Galois rings will also be supported in the near future.

Features:

– Creation of a default Galois ring (using a default defining polynomial).

– Creation of a Galois ring by a specified defining polynomial.

– Basic structural operations and arithmetic.

– Euclidean operations.
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7 Extensions of Rings

7.1 Algebraic Number Fields [HB 53]

Algebraic number fields and their orders have been modified in several ways since Magma
V2.7. A new field type has been created to act as the field of fractions of orders of number
fields. More functionality has been provided for relative fields and orders and their ideals
and quotients by (relative) ideals can now be created.

Removals:

– ThueSolveInexact, BetterPolynomial, ClassGroupStructure and IsRelative have all been re-
moved as they were considered to be obsolete. The functionality of each of these can be achieved
by alternate means.

– MinimalInteger has been removed but its functionality can be achieved by using the function meet

with second argument the coefficient ring of the order the ideal is of. There are more possibilities
for the second argument to this function.

– Polynomials can no longer be coerced into number fields or orders. This removes the ambiguity
when coercing polynomials into a ring with a number field or an order as the coefficient ring.

– NumberField of cyclotomic and quadratic fields was withdrawn.

– SetKantVerbose has been removed but verbose printing can be gained using SetVerbose.

General New Features:

– Predicates on orders, fields and ideals: IsAbsoluteOrder, IsAbsoluteField, IsAlgebraicField,
IsNumberField, IsSimple, IsRamified, IsUnramified, IsTotallyRamified, IsWildlyRamified,
IsTamelyRamified, IsInert, IsSplit, IsTotallySplit.

7.1.1 Fields and Orders

Changes:

– FieldOfFractions returns a field of the new type FldOrd. Some of the functionality of number
fields and their elements acting as field of fractions to orders has been transferred to this new type
and is no longer present for number fields.

– The parameters Dedekind, Splitting and ReducedDiscriminant have all been removed from
MaximalOrder and pMaximalOrder. Discriminant, Ramification and Al (for algorithm selec-
tion) parameters have been implemented for MaximalOrder.

– The i-th row of the j-th MultiplicationTable now contains the coefficients of the product of the
ith and jth basis elements. This used to be the i-th column.

– The spelling of the option "Padic" for the Al parameter for GaloisGroup has been changed to
"pAdic" to be consistent with spelling throughout the system. Fast was renamed into Conditional.

– General speed up of class group computations.

– NumberField(x^2-2) and NumberField(x^2-2) now return different fields.

– Improved root finder for embeddings of number fields and computing nth roots of algebraic numbers.
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– The matrix returned from LLL has been transposed.

– Changed behaviour for creation of fields or orders with non-monic or linear polynomials.

– Order(RngOrd, AlgMatElt, RngIntElt), ideal<RngOrd| AlgMatElt> now have the matrix trans-
posed.

– The names of all the Thue functions have changed. To create a thue object call Thue and to evaluate
and solve call Evaluate and Solutions respectively.

– Relative norm equations will use a faster algorithm now. The new solver will find non–integral
solutions for normal extensions.

New Features:

– The type FldOrd has been added. Fields of this type are the fields of fractions of an order. They
will have the same basis as the order they are the field of fractions of which will not necessarily be
a power basis. Elements of these fields have type FldOrdElt.

– The type FldAlg has been added as an overtype of FldNum and FldOrd and similarly FldAlgElt.

– Non monic polynomials can generate number fields.

– New varargs for number field construction: Abs, DoLinearExtension, Global to allow the creation
of non–simple extensions, degree 1 extensions and “global” extensions.

– New signatures for basis functions which also take a ring as well as the order, field or ideal have
been implemented returning the basis as elements of the given ring.

– Embed can be used to specify the embedding of one algebraic field in another and EmbeddingMap

will return the existing embedding between two fields.

– Various properties of orders and their elements can be set by calling SetOrderMaximal, SetOrder-
TorsionUnit and SetOrderUnitsAreFundamental.

– The internal precision used by KANT for calculations in a real field can now also be set directly for
fields (not just for orders).

– Solutions of IndexFormEquations can be calculated.

– Completion of absolute maximal orders at a finite prime

– pSelmerGroup of absolute maximal orders at a list of primes.

– Conductor of orders, Different of orders, elements and ideals.

– OptimizedRepresentation will return the homomorphism now, all number field homomorphisms
allow for inverses.

– FactorBasis, Relations, ClassGroupCyclicFactorGenerators, RelationMatrix

– A parameter for Regulator allows access to the current value without first having to compute the
fundamental units.

– New (faster) algorithms for factoring monic polynomials over (absolute) maximal orders, embedding
of fields.

– Maximal printing for orders in Kash style. SetKantPrinting(true); to print order elements in
Kash style.

– Random for RngOrd, FldAlg.
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– Almost everything not dependent on real arithmetic (essentially class and unit groups) works for
relative extensions (extensions of maximal orders).

– sub<...> and Order([ FldAlgElt ]) allow the construction of arbitrary orders.

– Use of the “dot–operator .” for orders and their fields of fractions to return the ith basis element
as an element of the field.

– Galois theory: FixedField, FixedGroup. GaloisGroup and Subfields for (simple) relative exten-
sions.

– Class field theory: a new type FldAb for the representation of Abelian extensions of number
fields. Supporting functions: AbelianExtension, RayClassField, NormGroup, Discriminant,
Degree, EquationOrder, Conductor, AbsoluteDegree, BaseField, BaseRing, CoefficientField,
CoefficientRing, Components.

– AbsoluteDiscriminant, AbsoluteBasis.

7.1.2 Elements, Ideals and Quotients

Changes:

– The algorithm for computing roots of elements has been replaced by a faster one.

– The i-th row of RepresentationMatrix of an element now gives the coefficients from the multipli-
cation of an element by the i-th basis element instead of the i-th column.

– Eltseq for an order element will always return field elements. (This is because in general relative
extensions the coefficients have to be non-integral).

– ideal<O | mat> now needs a transposed matrix, i.e. the rows of mat correspond to the ideal basis,
not the columns.

– The codomain of the map returned by SUnitGroup is now the field rather than the order.

New features:

– Fractional ideals of orders have been given their own type, RngOrdFracIdl. All ideals inherit from
this type.

– The functionality for absolute ideals has been provided for relative ideals where possible.

– Quotients of a relative order and an ideal of that order can now be formed. Ideals can be constructed
from a module over an order or a matrix and ideals of the coefficient order. This information is
used for the basis of the ideal.

– The functions IsPower, Root, IsSquare and SquareRoot have been implemented for ideals of orders.

– The Norm, Trace, CharacteristicPolynomial, MinimalPolynomial and RepresentationMatrix

of an element can be found in or over a user specified ring.

– Divisors is now available for elements of maximal orders.

– The index of the module Z[a] in the order containing the element a can be calculated using Index.

– UnitGroup for absolute maximal orders modulo integral ideals. RayResidueRings i.e. UnitGroups
of orders modulo integral ideals and restriction of the signs of the embeddings. Also provided is
ChineseRemainderTheorem for infinite places.

– pRadical, MultiplicatorRing for non primes and relative extensions.
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– ColonIdeal, AbsoluteNorm for ideals, id meet r.

– Inverses and division in residue class rings.

– A special algorithm for PowerProduct using matrix input.

– !! on ideals will create the ideal as an ideal of the ring given.

– Elements can be indexed by integers, for example, x[i], to return the ith coefficient of an element
x. The coefficients of an element with respect to a Q-basis can be returned using Flat.

– Ramification theory for ideals: RamificationGroup, RamificationField, DecompositionGroup,
DecompositionField, InertiaGroup, InertiaField.

– subset for ideals. Automorphisms of number fields may be applied to ideals.

Bug fixes:

– All functions returning real conjugates of algebraic numbers now do a precision check, thus the
returned values are correct.

– Certain class group computations that failed because of overflow in the real computations work
now.

– The move system is more robust wrt. circular references.

– Coercing a polynomial into a ring with an order or number field as the coefficient ring no longer
sometimes coerces the polynomial into the coefficient ring but always over the coefficient ring.

– Repeated principal ideal testing without the computation of the generator produced wrong results.

7.2 Quadratic Fields [HB 54]

The quadratic fields and rings have been rewritten to become a part of the algebraic fields
and their orders. Quadratic Fields (FldQuad) now inherit from the Number Fields (FldNum)
and Quadratic Rings (RngQuad) now inherit from the Orders of algebraic fields (RngOrd).

Removals and Changes:

– Some element functions available for a range of discriminants only are now available for one less
discriminant (17), (div, mod, Modexp, Gcd). These functions along with Factorization and
TrialDivision are only for elements in maximal orders.

– The field of fractions of a quadratic ring is a field of type FldOrd. To retrieve the corresponding
quadratic field the function NumberField must be used.

– Elements are represented with respect to the basis of the order or field which is their parent. For
example, EO.2, where EO is an equation order of some field where it is different to the maximal
order of the field, is

√
d and EO has basis {1,

√
d}. Previously, the elements of such an order were

expressed using the basis of the maximal order {1, (1 +
√
d)/2}.

– O.1 where O is a quadratic order now returns an element in the field of fractions of O which will be
the first basis element of O instead of the second. O.2 will return the second basis element which
was before returned by O.1. Name will also return the 2nd basis element of O and AssignNames will
assign the string to this 2nd basis element.
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– The algorithm used for ClassGroup and ClassNumber has changed for small discriminants. The
defaults of the parameters have changed for large discriminants resulting in a longer running time
and results that are provable under GRH. “ClassGroup” for non maximal orders has been renamed
to PicardGroup and its size to PicardNumber.

– Taking the ith coordinate of an element of a quadratic order x[i] returns a rational instead of an
integer.

– The defining polynomial of any order is the same as that of its Quadratic field; it does not reflect
the presence of the conductor.

– Regulator returns a FldPrElt instead of a FldReElt.

– NormEquation returns a sequence containing possibly more than one element as its second return
value.

– BiquadraticResidueSymbol and Primary take arguments of gaussian integer (quadratic ring ele-
ments) instead of field elements since an error occurred when field elements were input.

New Features:

– Quadratic fields and their orders are compatible with number fields and their orders.

– Quadratic fields and orders can be created from number fields and their orders using the function
IsQuadratic.

– All the functionality of the orders and algebraic fields which was absent for the quadratic fields is
now present. Some examples are SplittingField, PrimitiveElement, AutomorphismGroup and
GaloisGroup.

– NormEquation is now possible for real quadratic fields.

– A quadratic field may be extended to a relative number field.

– Ideals (both integral and fractional) of quadratic orders may be formed. In addition to the func-
tions for ideals of orders the functions Conjugate, Content, Discriminant, QuadraticForm and
Reduction are available for quadratic ideals. Quadratic ideals can also be created from a quadratic
form using the function QuadraticIdeal.

– Quotients of quadratic orders by ideals can be taken. The result will have type RngOrdRes.

– A LCM function has been added for elements of a maximal order.

Bug Fixes:

– A bug in FundamentalUnit of a quadratic order has been fixed by the overall changes.

– A bug which resulted in incorrect answers being produced by BiquadraticResidueSymbol has been
corrected. An example which did not finish running in a reasonable amount of time now does.

– A bug which caused GCD computations to crash has been fixed.
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7.3 Cyclotomic Fields [HB 55]

The cyclotomic fields have been rewritten to become a part of the algebraic fields and their
orders. Cyclotomic Fields (FldCyc) now inherit from the Number Fields (FldNum). This
has resulted in increased speed for most operations and extended the number of available
operations greatly.

Removals and Changes:

– Conjugate(a, n) now returns a conjugate of a. The signature Conjugate(a, r) should be used
to retrieve the conjugate of a under the automorphism ζm 7→ ζnm where r is ζnm for some n coprime
to m, the order of the field.

– The elt constructor now takes as many coefficients as the degree of the field instead of an arbitrary
number. Coercion will only take sequences of length the degree of the field.

New Features:

– Orders of cyclotomic fields can be found from the field.

– Ideals and quotients of cyclotomic orders can be formed.

– Cyclotomic fields and orders can be extended to relative number fields and orders.

Bug Fixes:

– RootOfUnity now returns a root when the order of the field is odd and the exponent given divides
twice the order instead of giving an error when the exponent was not equal to twice the order.
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7.4 Algebraic Function Fields [HB 57]

Removals and Changes:

– The type of the vector space returned by RiemannRochSpace, Module and Relations has changed.

– The order of the arguments to Module and Relations has changed.

New Features:

– FunctionField(g) where g is a bivariate polynomial.

– For all algebraic function fields RationalExtensionRepresentation, ExactConstantField and
SeparatingElement have been added.

– The following new functions apply to function field and/or order elements: IsSeparating, Root,
IsConstant, IntegralSplit, Expand, RationalFunction, ProductRepresentation and Minimum.
Random elements of global function fields and their orders are now obtainable.

– The following new functions apply to divisors and/or places: Gcd, Lcm, IsCanonical, ShortBasis,
ComplementaryDivisor, NumberOfSmoothDivisors, Roots, RamificationDivisor, GapNumbers,
WronskianOrders, WeierstrassPlaces and IsWeierstrassPlace. The function Divisor has a
new signature that takes two ideals belonging to maximal orders of a function field.

– An algorithm for computing the divisor class group of a global function field has been implemented.
As a consequence the following functions relating to the class group may be applied to a global func-
tion field: ClassGroup, ClassGroupAbelianInvariants, ClassNumber, PrincipalDivisorMap,
ClassGroupExactSequence, GlobalUnitGroup, IsGlobalUnit, SClassGroupAbelianInvariants,
IsGlobalUnitWithPreimage, SClassNumber, IsSUnitWithPreimage, IsSPrincipal, SUnitGroup,
SClassGroupExactSequence, IsSUnit, SPrincipalDivisorMap, SRegulator, ClassGroupPRank,
and HasseWittInvariant.

– The following functions relating to the class group may be applied to maximal finite orders and
their ideals in a global function field: ClassGroup, ClassGroupAbelianInvariants, ClassNumber,
ClassGroupExactSequence, PrincipalIdealMap, IsPrincipal UnitGroup, IsUnitWithPreimage.

– The function WeilRestriction is available for elliptic function fields.

– Machinery for working with differentials (DiffFunElt) is now available. In addition to basic arith-
metic the most relevant functions are DifferentialSpace, DifferentialBasis, Differentiation,
Differential, Divisor, SpaceOfDifferentialsFirstKind, BasisOfDifferentialsFirstKind,
SpaceOfHolomorphicDifferentials, BasisOfHolomorphicDifferentials, Residue, Valuation,
IsCanonical, FunctionField, IsExact, Cartier, and CartierRepresentation.

– The modules returned by RiemannRochSpace, SpaceOfHolomorphicDifferentials, Relations,
Module and DifferentialSpace, come with embeddings into a function field or space of differentials
of a functions field. The intersection, sum etc. of such modules is possible as well as coercion between
the field or space and the module.

– Factorization of polynomials (univariate and multivariate) over function fields and their orders
can now be achieved.
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7.5 Newton Polygons [HB 58]

Removals and Changes:

– The interpretation of a precision with respect to some exponent denominator has been clarified.
The exponent denominator it is with respect to is the lowest common multiple of the exponent
denominator of the root or expansion and the exponent denominators of the coefficients of the
polynomial. Since denominators have if anything increased, the precision of answers has decreased.

– The curve taken as an argument to NewtonPolygon must now be of the type Crv—one of the new
scheme types.

Bug Fixes:

– Some expansions giving more precision than was asked for have been amended, reducing the precision
to the required amount. (This excess was above that due to the reinterpretation of precision with
respect to exponent denominators).

7.6 Local (including p-adic) Rings and Fields [HB 42, 59]

Bug Fixes:

– A problem with SuggestedPrecision has been fixed.

– UnramifiedExtension where pf > 230 is now possible.

– A bug involving resultants of multivariate polynomials has been fixed.

– The error checking on HenselLift has improved.

– An improvement in the linear algebra over local rings has been attempted.

29



8 Commutative Algebra

8.1 Ideal Theory and Gröbner Bases (New) [HB 50]

Magma now provides facilities for computing with Gröbner bases of ideals of polynomial
rings over Euclidean rings (including the important case of the integer ring Z). Such
Gröbner bases are computed in Magma by an extension, due to Allan Steel, of Jean-Charles
Faugère’s F4 algorithm which uses sparse linear algebra.

The valid Euclidean rings in Magma supported are: the integer ring Z, the integer
residue class rings Zm, the univariate polynomial rings K[x] over any field K, Galois rings,
and valuation rings.

The extension of Faugère’s algorithm depends on an algorithm for computing a unique
echelon form of a sparse matrix over a general Euclidean ring. Based on this new sparse
matrix algorithm and some other techniques, Magma ensures that a Gröbner basis over a
Euclidean ring is reduced, and unique (see the Handbook for details). Uniqueness is even
ensured for rings with zero divisors!

Many of the standard functions based on Grob̈ner bases over fields also carry over to
ideals defined over Euclidean rings. One can even effectively compute with more general
rings which are not Euclidean (see the Handbook examples).

New features:

– Ideals may be defined over general Euclidean rings, and Gröbner bases of such ideals may be
computed.

8.2 Affine Algebras [HB 51]

New features:

– Affine algebras may now be created whose base ring is a general Euclidean ring.

8.3 Modules over Affine Algebras [HB 52]

New features:

– Modules over affine algebras may now be created whose base ring is a general Euclidean ring.
Most current module operations (for modules over affine algebras over fields) are also valid for such
modules, including the computation of syzygy modules.
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9 Linear Algebra and Module Theory

9.1 Matrices [HB 62]

New Features:

– The algorithm to compute determinants of matrices over Z or Q has been greatly improved by first
using the sparse Smith–algorithm techniques, and then using the modular algorithm of Abbott,
Bronstein and Mulders.

– A new algorithm of Allan Steel for computing minimal and characteristic polynomials of matrices
over Z or Q has been implemented. This is based on the p-adic nullspace algorithm and so is very
much faster than the previous algorithm.

– New function MinimalAndCharacteristicPolynomials to compute the minimal and characteristic
polynomials simultaneously (faster over some rings than calling the separate functions), and new
functions FactoredMinimalAndCharacteristicPolynomials, FactoredMinimalPolynomial, and
FactoredCharacteristicPolynomial which are faster over some rings than calling Factorization

on the minimal or characteristic polynomials.

– New function AntisymmetricMatrix to create an antisymmetric matrix.

9.2 Modules over Orders (New) [HB 65]

Modules over orders of type ModOrd exist only for maximal orders so that the modules are
over a Dedekind domain for which the structure theory is greater.

New Features:

– The Module function can create modules over orders from orders, vectors, ideals and tuples of
vectors and ideals.

– Submodules and quotients of modules by submodules can be created using the sub and quo con-
structors. For quotient modules a generalised SmithForm can be computed.

– The BaseRing, Degree, NumberOfGenerators, Determinanant, Dimension and the vectors gener-
ating a module can all be retrieved from a module.

– Equality of modules, whether an element lies in a module and whether one module is a subset of
another can all be determined. Intersections of modules can also be taken.

– Modules can be multiplied with ideals and added. Modules can also be formed as the product of a
module element and an ideal.

– The Basis of a module can be determined as well as its ElementaryDivisors.

– The Dual of a module wrt. scalar products can be computed.

– The SteinitzClass and SteinitzForm of a module can be computed.

– Homomorphisms between modules can be created as well as the hom–module of homomorphisms
between two modules. The image and kernel of homomorphisms can be calculated. A module
can be tested for being a submodule of another. The morphism of a module into a submodule or
quotient module is returned by Morphism.

– Elements of Modules can be created by coercion of a sequence, vector or module element into a
module. These elements can be added, subtracted, multiplied and divided by scalars and multiplied
by ideals. Equality of module elements can be determined and elements can be represented as
sequences.
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10 Lattices and Quadratic Forms

10.1 Lattices [HB 66]

New features:

– Many lattices in the database of lattices maintained by Neil Sloane are now available in a Magma
database (LatticeDatabase). Lattices already available in Magma through standard intrinsic func-
tions are not included in this database.

10.2 Binary Quadratic Forms [HB 67]

Removals and Changes:

– The Shanks algorithm is now used in place of the Gauss algorithm for the cases in which composition
of forms is specified using the * and ^ operators. The Gauss algorithm is the default when when
composition of forms is specified using the functions Power and Composition.

– The function IsOne has been renamed to IsIdentity.

Bug Fixes:

– The parameter Reduction is now provided for Composition and Power. Its default value is false.

11 Representation Theory

11.1 Modules over Matrix Algebras [HB 76]

New Features:

– Given a K[G]-module M , the new function GModuleAction returns the action of G on M as homo-
morphism from G into the matrix group GLn(K).

11.2 Characters of Finite Groups [HB 77]

Bug fixes:

– The Symmetrization function has been altered to reverse the outcomes of [1, 1] and [2]. This gives
the more usual meanings to these symmetrizations.

– Conjugation of a character of a normal subgroup is repaired.

– A bug in OrthogonalComponents and SymplecticComponents which led to incorrect deductions
about character irreducibility has been rectified.
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12 Algebraic Geometry

For version 2.8 the algebraic geometry suite has been completely re-engineered. Most
functionality has been moved into the kernel and idiosyncrasies of the first geometry im-
plementation have been removed. The major categories that have been added or enhanced
are

• Schemes

• Rational scrolls

• Zero-dimensional schemes

• Algebraic curves

• Divisor groups of plane curves

• Rational curves

• Elliptic curves

• Hyperelliptic curves

12.1 Schemes [HB 81]

There are three major enhancements visible to the user. They all arise as part of the
re-implementation of the geometry types. The first is that with the types now part of the
Magma kernel, objects interact more effectively with other parts of Magma. For example,
it is now possible to have sets of points.

The second is the new point types allow coordinates of points to lie in rings other than
the base ring of the scheme. This is especially useful for schemes defined over fields, since
the field extension machinery is now tied more closely to the Gröbner basis machinery for
operations like finding the singularities of a curve.

The third is far more powerful mapping types, including new constructors and more
familiar usage. Maps can now be defined between arbitrary schemes (with some conditions
on the base ring when Gröbner basis techniques are required).

Beyond these, there are a number of new object types.

New Features:

– More flexible creation of schemes defined over a ring k

– Points of schemes with coefficients in k-algebras

– New map constructors

– Enhanced image and preimage calculation under maps

– A new type for ruled surfaces and other rational scrolls

– A new type for products of affine and projective spaces
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12.1.1 Linear Systems

The linear systems module has also been moved into the kernel. Linear systems can now
be created on both affine and projective spaces rather than just projective. The following
changes were made.

– The comparison maps between CoefficientMap(L) and PolynomialMap(L) for a linear system L
are now returned as maps which take an argument x rather than these intrinsics taking x as a
second argument.

– The various intrinsics Subsystem(L,X) where L is a linear system and X is some other data have
been renamed LinearSystem(L,X).

12.2 Algebraic Curves

All of the distinct types of curve in version 2.7 have been translated into the new scheme
types. In particular, the functions and usage for different kinds of curves is converging
to a standard. Most of the new curve functionality is based on our new function field
machinery, but in the context of curves the results are available directly without function
field knowledge.

12.2.1 Plane Curves [HB 82]

The new types are especially powerful for our existing curve types. Although it is hard to
list particular features, this is exemplified by the computation of points on elliptic curves.
Since points are now allowed over any extension of the base ring, one can now work with
points over a variety of rings on the same elliptic curve without having to create a new
curve over each extension.

– Transfer of all curve types to the new regime resulting in more uniform functionality.

12.2.2 Rational Curves and Conics [HB 84]

– New data type for rational curves.

– A parametrisation algorithm for rational curves given a rational point.

– A canonical parametrisation algorithm reducing rational curves to conics irrespective of the existence
of a point.

– New data type for plane conics.

– A new algorithm for finding a point with small coefficients over the rationals if one exists.

– Type translation from curves of genus 0 to rational curves.
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12.2.3 Function Fields and Divisors on Curves [HB 82]

– The computation and arithmetic of the function field of a curve has been more tightly associated
to the curve itself.

– New data type for places and divisors on curves; functionality is retrieved from the associated
function field.

– Computation of the divisor class group for curves defined over finite fields.

12.3 Elliptic Curves [HB 85]

Elliptic curves are now part of the general scheme machinery. It is highly recommended
to read the appropriate chapters in the Handbook for a better description of how these
changes affect the use of elliptic curves.

12.3.1 General Elliptic Curves

Removals and Changes:

– Elliptic curves are now scheme types (of type CrvEll still), and inherit all of the appropriate scheme
functionality. As part of this change, the curve is no longer the parent of points but various point
sets are instead. The type of a point is now PtEll and the type of a point set is SetPtEll.

– Subgroup schemes of elliptic curves are now also schemes, of type SchGrpEll. All functions which
apply to subgroup schemes should also apply to the elliptic curves.

– Isomorphisms are not compatible with isogenies at the moment.

– In keeping with the scheme philosophy, BaseExtend(E, K) does not work unless K is an extension
of the base field of E. In particular, this will fail if K is a finite field and E is defined over Q. The
intrinsic ChangeRing can be used instead in this case.

– Subschemes of elliptic curves are now constructed using scheme functions, and are no longer a
special type.

– The deprecated function EllipticCurve(K, j) has been removed; use EllipticCurve(K!j) in-
stead.

– The deprecated function IsPoint(S, E) has been removed; use IsPoint(E, S) instead.

– The deprecated function IsOrderOfPoint has been removed; use IsOrder instead.

– The functions mTorsionSubgroup, nTorsionSubgroup, and pTorsionSubgroup have been removed;
use TorsionSubgroupScheme instead.

– The functions Lift(E, K) and Lift(E, K, m) have been removed; use BaseExtend or ChangeRing
instead.

– The function Subgroup has been renamed to SubgroupScheme.

– Since elliptic curves are also (trivial) subgroup schemes, the function DefiningPolynomial for
a subgroup scheme has been renamed to DefiningSubschemePolynomial to make it clear which
function is meant.

– The functions WeierstrassCoefficients(E) and RationalPoints(E, K) should be considered
deprecated and will be removed in a future release.
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New features:

– Isomorphisms between elliptic curves are now scheme maps, and inherit the appropriate functionality
of these maps.

– The function PointsAtInfinity has been added for symmetry with the hyperelliptic curves.

– Elliptic curves can be created from general curves which are already in the correct form, without
the need to specify a point on the curve.

– The functions IsIsomorphic and SimplifiedModel now work for curves defined over any field
which supports root finding, not just finite fields.

– The function Isomorphism has been added to return the isomorphism between two curves that are
known to be isomorphic.

– The functions IsogenyFromKernel and IsogenyFromKernelFactored are no longer restricted to
elliptic curves defined over Q or a finite field.

12.3.2 Elliptic Curves over the Rational Field

New features:

– Improvements have been made to the rank computation in the no two-torsion case.

– John Cremona’s database of elliptic curves has been updated to conductor 10 000.

Bug fixes:

– A bug has been fixed in CremonaReference which would occasionally cause an incorrect reference
to be returned.

– The computation of the torsion subgroup no longer crashes or returns incorrect results for curves
with large coefficients.

– Various crashes in the rank computation have been fixed.

12.3.3 Elliptic Curves over Finite Fields

New features:

– An early abort feature has been added to the point counting intrinsic SEA, which enables the
computation to be terminated if the order is divisible by too many small primes.

Bug fixes:

– A bug has been fixed in IsIsomorphic that caused an incorrect isomorphism to be returned when
used on supersingular elliptic curves in characteristics two or three.
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12.4 Hyperelliptic Curves [HB 86]

12.4.1 Hyperelliptic Curves

New Features:

– New intrinsics for finding automorphisms and for isomorphism testing have been added
(AutomorphismGroup and IsIsomorphic resp.).

– New intrinsics that change the model of a hyperelliptic curve are now available. Those are
SimplifiedModel, pMinimalModel, pMinimalWeierstrassModel, ReducedModel, pNormalModel

and MinimalWeierstrassModel,

– Using an algorithm due to Mestre, one can construct a curve of genus 2 from a given a set of Igusa-
Clebsch invariants (the function CurveFromICInv). The implementation of the algorithm must be
credited to P. Gaudry. The reduction of the curve so obtained is achieved using ideas due to P. Van
Wamelen.

– The function Frobenius applies the Frobenius to a point on a hyperelliptic curve.

12.4.2 Jacobians of Hyperelliptic Curves

New Features:

– Two new Order functions are provided to compute the order of a point P on a Jacobian J where
the order of P or of J is bounded and where (optionally) some modular information is known about
that order. Being able to use this extra information dramatically improves the running time of the
Order routines. These are due to P. Gaudry.

– The function Frobenius applies the Frobenius to a point on a Jacobian.

– The function WeilPairing computes the Weil pairing of two points on a Jacobian defined over a
finite field.

– The Order function for Jacobians over finite fields has been rewritten by P. Gaudry. Jacobians
defined over a curve of genus 2 are treated separately. More generally some specific algorithms are
provided to deal with some special cases.
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12.5 Modular Curves (New) [HB 87]

A package for computing with modular curves has been developed by David Kohel. Mod-
ular curves in Magma are a special type of plane curve. A modular curve X is defined in
terms of standard affine modular equations which are stored in precomputed databases.
Those modular curves presently available are defined by modular equations—a bivari-
ate polynomial relation between the j-invariant and one of several standard functions on
X0(N). These give singular, affine models for X0(N) designed for computing isogenies of
elliptic curves.

Features:

– Creation of a modular curve of specified level rom a database. Possible model types are Atkin,
Canonical and Classical.

– Database of modular equations: Atkin, Canonical and Classical.

– Parametrization of the isogenies of an elliptic curve by points on some X0(N).

– j-invariant of a modular curve over a field.

– Base curve of a modular curve.

– Automorphisms: Atkin–Lehner involution.

– Hilbert and Weber class polynomials.

12.6 Modular Symbols [HB 88]

New features:

– The functions CuspidalSubspace and NewformDecomposition have been very greatly sped up,
using a variation on the new minimal and characteristic polynomial algorithms.
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12.7 Brandt Modules (New) [HB 89]

Brandt modules provide a representation in terms of quaternion ideals of certain cohomol-
ogy subgroups associated to Shimura curves XD

0 (N) which generalize the classical modular
curves X0(N). The Brandt module datatype is that of a Hecke module – a free module of
finite rank with the action of a ring of Hecke operators – which is equipped with a canonical
basis (identified with left quaternion ideal classes) and an inner product which is adjoint
with respect to the Hecke operators.

Features:

– Construction of a Brandt module on the left ideal class of a definite order in a quaternion algebra
over Q.

– Arithmetic operations with module elements.

– Inner product of elements with respect to the canonical pairing on their parent.

– Elementary invariants of a Brandt module: Level, discriminant, conductor etc.

– Decomposition of a Brandt module under the action of Atkin–Lehner and Hecke operators.

– Eisenstein subspace, cuspidal subspace.

– Operations on subspaces: Orthogonal complement, intersection.

– Properties of subspaces: Eisenstein, cuspidal, decomposable.

– Construction of Hecke and Atkin Lehner operators.

– q-expansions associated with a pair of elements of a Brandt module.

– Determination of the dimension of a Brandt module of given level obtained using standard formulae.

12.8 Modular Forms (New) [HB 90]

A package for computing with modular forms has been developed by William Stein.

Features:

– Computation of a basis of modular forms on Γ1(N) of any integer weight greater than one.

– Computation of all newforms of given level.

– Computation of all reductions of a newform of given level modulo a prime.

– Embeddings of a newform of given level in the complex and p-adic fields.

– Arithmetic with modular forms.

– Characteristic polynomials of Hecke operators.

– Decomposition into Eisenstein, cuspidal, and new subspaces.

– Dimension formulas.

12.9 K3 Surface Database [HB 91]

– Raw data for the K3 database in codimension at most 4.

– Functions for interrogating the database.

– Functions for modifying the database in light of new geometrical constructions.
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13 Incidence Structures

13.1 Graphs [HB 93]

Changes:

– The nauty program (B. McKay) has been updated to version 2.0. Version 2.0 has a larger range
of invariants to work with when trying to refine a graph’s partition, thus considerably speeding up
the search for a canonical labelling of difficult graphs. The available invariants and their respective
use are fully documented in the Magma handbook.

In addition, Version 2.0 now uses dynamic memory allocation which allows nauty to work on graphs
on any size.

– In addition to AutomorphismGroup, the functions IsDistanceTransitive, IsEdgeTransitive,
IsTransitive, IsPrimitive, IsSymmetric, EdgeGroup, OrbitsPartition, IsIsomorphic, and
CanonicalGraph now allow users to set a parameter suite given them more control over which
automorphism group to compute.

New Features:

– A function TestNautyInvariant is provided to help the user decide which invariant is to be used
to run nauty.

– The function StronglyRegularGraphsDatabase gives access to a catalogue of strongly regular
graphs due to B. McKay et al. Standard access functions to help retrieve the graphs in the catalogue
are also provided.

The function GenerateGraphs gives access to the graph generation program written by B. McKay.
This feature is only available on Unix platforms as graphs are generated (and read from) within a
Unix pipe.

The graph generation program allows users to generate any isomorph-free collection of graphs
responding to several criteria like, among others, the connectedness of the graphs, or whether they
are 3 or 4-cycle free.

– The function OpenGraphFile enables the user to open any file of graphs or any graph generating
pipe. The graphs must be in a specified format, and the pipe mechanism is only available on
Unix platforms. The function NextGraph is used to read any graph in the stream output from
GenerateGraphs or OpenGraphFile.
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14 Coding Theory

14.1 Linear Codes over Finite Fields (New) [HB 97]

Changes:

– The function VerfiyMinimumWeight was not performing well. It has been replaced by the function
VerifyMinimumWeightLowerBound which determines whether or not a given value is a lower bound
of a given code. The function VerifyMinimumWeightUpperBound performs similarly for an upper
bound.

– The function SubfieldRepresentation has been replaced by SubfieldRepresentationCode along
with the subfield code constructions SubfieldRepresentationParityCode and SubfieldCode.

– The old function ExpurgateCode now allows multiple words to be expurgated, while ExtendCode

now allows an extension of arbitrary length, and DirectSum now takes a sequence of arbitrary
length. The old function VectorSpace is now also named RSpace.

New Features:

– The advanced Zimmermann algorithm for MinimumWeight has been optimized: it now discards
information sets of low rank. A new parameter MaximumTime has been introduced to abort lengthy
calculations, and the parameter cutoff has been renamed RankLowerBound.

– A new database gives the user access to the best known binary linear codes of length up to 256 (joint
project with Markus Grassl). Codes can be accessed through the functions BestKnownLinearCode,
BestDimensionLinearCode, BestLengthLinearCode, and their abbreviations BKLC, BDLC and BLLC

respectively. Bounds can be accessed through the functions BKLCLowerBound, BKLCUpperBound,
etc. The functions are designed so that any two of the length, dimension, or minimum weight can
be specified, and the optimal result for the missing parameter is returned.

– New constructions for codes are CordaroWagnerCode, which returns the dimension 2 Cordaro–
Wagner code, MDSCode, which returns a maximum-distance-separable code, QuasiCyclicCode which
returns the quasicyclic code formed by concatenating cyclic codes, and NonPrimitveAlternantCode

which returns a non-primitive alternant code over GF(2).

– Some new constructions based on circulant matrices and related to quadratic residue codes are
DoublyCirculantQRCode and BorderedDoublyCirculantQRCode. The function TwistedQRCode

returns a twisted quadratic residue code. A generalisation PowerResidueCode returns the code of
an arbitrary power residue.

– New functions which take a code and produce a new code are: ResidueCode which performs a single
Griesmer step, PadCode which extends each codeword with zeros, ConstructionY1 which performs
construction Y1, and ExpurgateWeightCode which expurgates all codewords of given weight.

– New functions which take multiple codes to produce new codes are: CodeComplement which returns
the complement subspace from a given subcode, CodeJuxtaposition which joins the generator
matrices of two codes, ‘cat’ which concatenates all combinations of codewords from two codes,
and ZinovievCode which creates generalised concatenated codes. Further such functions include
ConstructionX, ConstructionX3 and ConstructionXX.

– New functions relating to subcodes are: Subcode which returns a subcode of given dimension, and
SubcodeBetweenCode which returns a code nested between an existing code-subcode pair.
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– The new function SubcodeWordsOfWeight returns the subcode generated by codewords of specified
weights.

– The new function WordsOfBoundedWeight returns all code words whose length lies between the
given bounds.

– Machinery has been provided which allows the construction of algebraic–geometric codes. See
functions AlgebraicGeometricCode and AGCode.

14.2 Linear Codes over Finite Rings (New) [HB 98]

Magma now has facilities for linear codes defined over Z4. These facilities are currently
basic but will be extended in the near future. Codes over general finite rings (including
Galois rings) will also be supported in the future.

Features:

– Various generic constructions and functions for Z4-codes.

– Construction of cyclic codes from factorizations of xn − 1 over Z4.

– Standard form of a Z4-code, giving the abelian group structure.

– The Gray map and a function to test whether the image of a Z4-code under the Gray map is linear.

– Minimum weight and weight distribution.

– Weight enumerators: complete, symmetric, Lee and Hamming.

– Construction of Kerdock and Preparata codes.

15 Optimization

15.1 Linear Programming (New) [HB 100]

Basic facilities are now provided for linear programming.
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