
Summary of New Features in Magma V2.4

December 14, 1998

1 Introduction

This document provides a terse summary of the new features installed in Magma for release
version V2.4 (December 14, 1998). Previous releases of Magma are: V2.3 (January 30,
1998), V2.20 (April 18, 1997), V2.10 (October 14, 1996), V2.01 (June 21, 1996), and V1.30
(March 5, 1996); release notes for these versions are found in the document relprev.dvi.

2 Summary

• Two important group theory databases are now included: the Besche-Eick database
of all groups up to order 1000 (excepting orders 512 and 768) and the Hulpke database
of transitive groups of degree up to 22.

• A facility for analyzing matrix groups of large degree defined over finite fields has been
installed. This module uses the Aschbacher classification of maximal subgroups of
GL(n, q). The module was written by Derek Holt, Alice Niemeyer, Eamonn O’Brien
and Anthony Pye.

• The Schönhage-Strassen FFT-based algorithm for the multiplication of very large
integers and an asymptotically-fast algorithm for the division of large integers has
been implemented.

• Two separate FFT-based algorithms are now employed for the multiplication of
univariate polynomials over the integers and similar coefficient rings. Also, an
asymptotically-fast algorithm for the division of polynomials has been implemented
and modular exponentiation is now performed using pre-inversion of the modulus.

• A new efficient packed representation for polynomials over GF(2) has been imple-
mented. This has led to dramatic speed-ups for all computations within finite fields
of characteristic 2. A database of sparse irreducible polynomials over GF(2) has also
been constructed for all degrees up to 11000.

• The Shoup algorithm for factorization of polynomials over finite fields has been im-
plemented, leading to very significant speed-ups.

• Stage 1 of a major revision and extension of the power series module has been com-
pleted. In this stage, the existing machinery has been redone in greater generality and
asymptotically-fast algorithms are employed for multiplication and division. Series
with fractional exponents are now permitted.

1



• The KANT number field machinery corresponding to Kash 1.9 has been installed.
This is the first major upgrade of the Magma general number field facility since Kash
V1.5 in 1995. This version of KANT provides the Magma user with greatly enhanced
performance for many fundamental algorithms. Particularly noteworthy is a Round
4 integral basis algorithm and a much improved class group algorithm.

• Major new number field facilities available in Magma V2.4 (courtesy of KANT)
are ray class groups, S-unit groups, prime ideal decompositions of fractional ideals,
subfield lattices, automorphism groups of normal and abelian extensions, solution of
Thue equations, unit equations and index form equations.

• A set of functions have been provided for computing q-expansions of the standard
elliptic and modular functions. These include the Weierstrass ℘-function, Eisenstein
series, Dedekind η-function, Jacobi θ-function, elliptic j-invariant and discriminant
function.

• The facilities for elliptic curves have undergone major expansion. Noteworthy is
the introduction of general machinery for working with isomorphisms, isogenies and
rational maps between curves. The new machinery allows comparatively easy com-
putation of things such as the endomorphism ring of a curve over a finite field and
the eigenvalues of the Frobenius automorphism (the latter being useful in point-
counting).

• The Cremona database of elliptic curves having conductor up to 5300 has been in-
stalled.

• The design of the facility for finite planes has been revised, firstly, to make it easier
to work with planes and their subplanes and secondly, to make it follow similar
conventions to other structures.

2



3 Removals and Changes

– The libraries directory of Magma has been renamed from LIBS to libs—this is now consistent with
all the other Magma filenames, which are in lower case.

– The following libraries of groups have been replaced by databases:

– The soluble groups of order up to 100 (gps100);

– The library of 2-groups of order dividing 256 (twogps);

– The library of 3-groups of order dividing 729 (thrgps);

– The library of primitive groups (prmgps);

– The library of transitive groups (trngps).

The use of databases means that the information may be accessed directly without first having to
load a library. In general, the new databases offer equivalent or extended functionality compared to
the old libraries. However, users wishing to continue using any of these libraries may obtain them
by mailing magma@maths.usyd.edu.au.

– The function IsDivisible has been renamed to IsDivisibleBy.

– For consistency, the function SquareFree has been renamed to Squarefree and the function
SquareFreeFactorization has been renamed to SquarefreeFactorization; the old function
names have been removed from the documentation but kept in the executable to allow old code to
continue to work for this release. (“Squarefree” seems to be more standard than “square-free”—
Knuth, for example, uses the former.)

– The function ChineseRemainderTheorem or CRT taking 3 integers has been removed to avoid con-
fusion. (Solution still retains the original functionality.)

– The function ChineseRemainderTheorem or CRT taking 3 integer sequences has been changed so
that it now only takes 2 integer sequences (the original “multipliers” sequence is now considered to
be all ones). (Solution still retains the original functionality.)

– The function PartialFractionDecomposition now produces the full partial fraction decomposition
of a rational function. The original functionality is now given by the function
SquarefreePartialFractionDecomposition.

– The function Variety now returns a sequence of tuples.

– The functions PowerSeriesAlgebra and LaurentSeriesAlgebra have been removed from the doc-
umentation in anticipation of their withdrawal in a future release.

– The number field function BetterPolynomial has been replaced by OptimizedRepresentation

which has slightly different semantics. The old function will be retained for compatibility in the
medium term.

– All number field functions that return (inexact) real or complex numbers have been changed so that
instead of returning fixed precision numbers, they return free numbers (type FldPrElt).

– The category names for formal series have been changed (and new ones have been added as well).

– The category name for elliptic curves has been changed to CurveEll and the category name for
points on an elliptic curve has been changed to CurveEllPt.

3



– The following incidence structure intrinsics have changed to accept the incidence structure in
which the operation should be performed as the first argument: Block, BlockDegree, BlockSize,
ConnectionNumber, Covalence, IsParallelClass, Line, PointDegree.

– The function IsBlock(S, D), where D is an incidence structure and S is a set of points of D, is
now IsBlock(D, S).

– The following plane intrinsics have changed to accept the plane in which the operation should be per-
formed as the first argument: AllPassants, AllSecants, AllTangents, CentralCollineationGroup,
Conic, ContainsQuadrangle, Coordinates, Exterior, ExternalLines, Index, Interior, IsArc,
IsCollinear, IsComplete, IsConcurrent, IsParallel, IsUnital, Knot, ParallelClass, Pencil,
QuadraticForm, Support, Tangent, UnitalFeet.

4 Language and System Features [HB 1–5]

New features:

– New operator cmpne which is the logical NOT of the operator cmpeq (to allow equality testing of
arbitrary objects).

– The procedure SetColumns now checks whether its argument is in range (for the first time!).

– New function IsCoercible to test whether an object is coercible into a given structure, and the
result of coercion if allowed. The effect is similar to ! but allows a test for failure.

– New function MakeType to create the type (category name) named by a given string.

– New function IsIntrinsic which tests whether a specific intrinsic exists, named by a given string,
and if so, returns the actual intrinsic.

– New function GetVersion which returns a sequence of integers indicating the current version of
Magma.

– New procedure SetTraceback and function GetTraceback to control whether Magma should pro-
duce a traceback of user function calls before each error message.

– New procedure Traceback to display a traceback of the current Magma function invocations.

– Function HasOutputFile is documented for the first time.

– Function Realtime is documented for the first time.

– Procedure ShowMemoryUsage is documented for the first time.

5 Aggregate Data Types [HB 6–9]

New features:

– New function CanChangeUniverse, to test whether the universe of a set or sequence can be changed
(like ChangeUniverse but with a test for success).

– New functions and procedures (Append(T, x), Append(∼T, x), Prune(T) and Prune(∼T)) for
appending to and pruning of tuples [HB 9].

4



6 Groups and Semigroups

6.1 General Groups [HB 15]

Removals and Changes:

– The library gps100 has been withdrawn. It is subsumed in the much extended database SmallGroups
(see below).

New features:

– A database of all groups having order at most 1000 (excepting orders 512 and 768) has been included
in Magma. This database was prepared by Bettina Eick and Hans Ulrich Besche in 1997 using GAP,
and incorporates directly the libraries of 2-groups of order dividing 256 and the 3-groups of order
dividing 729 which were prepared by M.F. Newman and E.A. O’Brien. The functions available for
accessing the database are

– SmallGroupDatabaseLimit,

– NumberOfSmallGroups(n),

– SmallGroup(o, n),

– SmallGroups(o), and

– SmallGroupProcess(o).

Functions IsEmpty, Current, CurrentLabel and Advance are provided for working with a small
group process.

– The function CharacterDegrees employs Slattery’s algorithm to determine the degrees of the irre-
ducible characters of a p-group.

6.2 Finitely Presented Groups [HB 16]

New features:

– Given a finitely presented group G and normal subgroups H and K of G such that K ≤ H ≤ G,
and a prime p, the function GModule(G,H,K, p) returns the K[G]-module M corresponding to the
action of G on the largest elementary abelian factor of H/K of p-power order. If P is omitted, the
module returned is the largest elementary abelian factor of H/K.

– Given a finitely presented group G and normal subgroup H of G and a prime p, the function
Gmodule(G,H, p) returns the K[G]-module M corresponding to the action of G on the largest
elementary abelian factor of H of p-power order.

6.3 Finitely Generated Abelian Groups [HB 18]

New features:

– Given finite abelian groups G and H, the function Hom(G,H) computes an abstract abelian group
isomorphic to E = Hom(G,H). In addition, a transfer map is returned which converts an element
of E to the actual homomorphism. Related functions are HomGenerators and AllHomomorphisms.

5



6.4 Finite Soluble Groups [HB 19]

New features:

– If the abelian groups G and H are given in terms of power-conjugate presentations, the function
Hom(G,H) computes an abstract abelian group isomorphic to E = Hom(G,H). In addition, a
transfer map is returned which converts an element of E to the actual homomorphism. Related
functions are HomGenerators and AllHomomorphisms.

– The function CharacterDegrees employs Slattery’s algorithm to determine the degrees of the irre-
ducible characters of a p-group.

6.5 Permutation Groups [HB 20]

Removals and Changes:

– The library prmgps of primitive groups has been withdrawn. It is replaced by the database
PrimitiveGroups (see below).

– The library trngps of transitive groups has been withdrawn. It is replaced by the database
TransitiveGroups (see below).

New features:

– The various functions that compute conjugacy classes of subgroups of a permutation group G have
been modified to compute the conjugacy classes of subgroups of a quotient group of G. Thus, if
N is a normal subgroup of G, the function Subgroups(G,N) will compute a preimage in G of
a representative for each conjugacy class of subgroups of the quotient group G/N . The optional
parameters that apply to Subgroups(G) also apply to this variant.

– The primitive groups library prmgps has been converted into a database. Thus, the primitive
groups of degree up to 50 are now directly accessible from within Magma (without having to load
the library), and the names of the access functions have been redesigned. The new functions are:

– PrimitiveGroupDatabaseLimit,

– NumberOfPrimitiveGroups (replacing PrmNumberOfDegree),

– PrimitiveGroup (replacing PrmGroup, PrmGroupSatisfying, PrmGroupOfDegreeSatisfying),

– PrimitiveGroups (replacing PrmGroupsSatisfying, PrmGroupsOfDegreeSatisfying),

– PrimitiveGroupDescription (replacing PrmInfo), and

– PrimitiveGroupProcess (replacing PrmProcess, PrmProcessOfDegree).

The functions IsEmpty, Current, CurrentLabel and Advance are provided for working with a
primitive group process, replacing PrmProcessIsEmpty, PrmProcessGroup, PrmProcessLabel and
PrmProcessNext.

– The transitive groups library trngps has been converted into a database. Thus, the Hulpke tables
of transitive groups of degree up to 22 are now directly accessible from within Magma (without
having to load a library), and the names of the access functions have been redesigned. The new
functions are:

– TransitiveGroupDatabaseLimit,

6



– NumberOfTransitiveGroups (replacing TrnNumberOfDegree),

– TransitiveGroup (replacing TrnGroup, TrnGroupSatisfying, TrnGroupOfDegreeSatisfying),

– TransitiveGroups (replacing TrnGroupsSatisfying, TrnGroupsOfDegreeSatisfying), and

– TransitiveGroupProcess (replacing TrnProcess, TrnProcessOfDegree).

The functions IsEmpty, Current, CurrentLabel and Advance are provided for working with a
transitive group process, replacing TrnProcessIsEmpty, TrnProcessGroup, TrnProcessLabel and
TrnProcessNext. A new function TransitiveGroupName has been installed; it returns a string
giving the name of the group in the Hulpke database.

– The function TransitiveGroupIdentification(G) returns the index in the transitive group database
of the group that is isomorphic to a given transitive group G.

– A recursive algorithm due to Bill Kantor for computing the maximal normal p-subgroup of a
permutation group is now available as the function pCoreKantor. Related functions are MEANS,
ElementaryAbelianNormalSubgroup and pElementaryAbelianNormalSubgroup.

Bug fixes:

– A bad memory management technique for the partition-backtrack permutation group algorithms
which caused very great loss of performance for large-memory runs has been fixed.

– A bug in the implementation of a new algorithm for computing normal subgroups of permutation
groups (first installed in V2.3) has been fixed. The effect of this bug was sometimes to cause a crash
and sometimes to result in some subgroups being missed. (Reported by Jurgen Klüners.)

– A bug that sometimes caused incorrect results to be returned when computing the conjugacy classes
of elements of a soluble permutation group has been fixed. (Reported by Gregor Kemper.)

6.6 General Matrix Groups [HB 21]

New features:

– New function VectorSpace(G) to return the vector space on which the matrix groupG acts naturally
(assuming G is over a field; otherwise the same as the function RSpace).

– The function Stabilizer now works when given an element (vector) of a G-module and an appro-
priate matrix group.

– New function IntegralGroup(G) which returns a group of integer matrices conjugate to the rational
matrix group G.

6.7 Matrix Groups over Finite Fields [HB 21]

The basic facilities provided by Magma for computing with matrix groups over finite fields
depend upon being able to construct a chain of stabilizers. However, there are many
examples of groups of moderately small degree where we cannot find a suitable chain.

An on-going international research project seeks to develop algorithms to explore the
structure of such groups. The main theoretical underpinning of the project comes from
the classification by Aschbacher (1984) of the (maximal) subgroups of GL(d, q) into nine

7



families. Much of the research effort to date has been devoted to designing algorithms
to decide whether G belongs to one of the eight families whose members have a normal
subgroup preserving a “natural linear structure”; here, we plan to exploit this information
to explore G further, ultimately producing a composition series for G. The final family
consists of groups G which are almost simple modulo scalars; here the aim is to determine,
a pair of efficiently computable inverse isomorphisms between G and a standard copy of
the relevant simple group.

New features:

– A family of functions is provided for testing whether a group preserves a form modulo scalars. The
main functions are ClassicalForms, SymmetricBilinearForm, QuadraticForm, and UnitaryForm.
Corresponding functions are provided to return the scalars corresponding to the generators of the
group of the form. These functions were implemented in Magma by Alice Niemeyer and Anthony
Pye.

– A family of functions is provided for testing whether a group is a classical group in its natural rep-
resentation. The main functions are RecognizeClassical, IsLinearGroup, IsSymplecticGroup,
IsOrthogonalGroup and IsUnitaryGroup. These functions apply the Niemeyer-Prager classical
group recognition algorithm as implemented in Magma by Alice Niemeyer and Anthony Pye.

– The function IsPrimitive determines whether a subgroup G of GL(d, q) acts imprimitively on the
underlying vector space. The ancillary functions BlockSystem and BlocksImage return information
about a proper block system and the action of G on such a block system, respectively. This group
of functions was implemented in Magma by Eamonn O’Brien.

– The function IsSemiLinear tests whether a matrix group G acts as a semilinear group of automor-
phisms on some vector space. If G does act semilinearly, information about this action is provided
by the functions DegreeOfFieldExtension, CentralisingMatrix, FrobeniusAutomorphisms, and
WriteOverLargerField. This group of functions was implemented in Magma by Eamonn O’Brien.

– The function IsTensor tests whether a matrix group G preserves a non-trivial tensor product de-
composition. If G does so, information about the decomposition may be obtained using the functions
TensorBasis, TensorFactors, and IsProportional. This group of functions was implemented in
Magma by Eamonn O’Brien.

– The function SearchForDecomposition searches for certain types of decompositions (corresponding
to some of the Aschbacher families) of a matrix group with respect to the normal closure of a supplied
subgroup. The following additional functions IsExtraSpecialNormaliser, ExtraSpecialParameters,
ExtraSpecialGroup, IsSymmetricTensor, SymmetricTensorBasis, SymmetricTensorFactors,
SymmetricTensorPermutations provide access to information about some of the decompositions.
This group of functions was implemented in Magma by Eamonn O’Brien.

– The function IsOverSmallerField uses the Glasby-Howlett algorithm to decide if the absolutely
irreducible group G ≤ GL(d,K) has an equivalent representation over a subfield of K.

– Given a group G of d×d matrices over a finite field E having degree e and a subfield F of E having
degree f , the function WriteOverSmallerField returns a group generated by the matrices of G
written as de/f × de/f matrices over F .

8



7 Rings

7.1 General Rings [HB 23]

New features:

– New functions GCD and LCM taking a set or sequence of general ring elements.

– The function IsDivisibleBy is now available for many ring element types for the first time.

– New function ExactQuotient for exact quotient (see IsDivisibleBy).

7.2 Integer Ring [HB 24]

The Schönhage-Strassen FFT-based algorithm for the multiplication of very large inte-
gers has been implemented. The crossover point (when this method beats the Karatsuba
method) is currently 215 bits (approx. 10000 decimal digits) on Sun Sparc workstations
and 217 bits (approx. 40000 decimal digits) on Digital Alpha workstations. The product
of two arbitrary integers, each having one million decimal digits, may now be computed
in 5.1 seconds on a 250MHz Sun Ultrasparc, or in 2.0 seconds on a 333MHz Digital Alpha
workstation (a 64-bit machine).

Magma V2.4 also contains an implementation of an asymptotically-fast integer (and
polynomial) division algorithm which reduces division to multiplication with a constant
scale factor that is in the practical range. Thus division of integers and polynomials are
now based on the Karatsuba and Schönhage-Strassen (FFT) methods when applicable.
The crossover point for integer division (when the new method outperforms the classical
method) is currently at the point of dividing a 212 bit (approx. 1200 decimal digit) integer
by a 211 (approx. 600 decimal digit) integer on Sun Sparc workstations.

Changes:

– The function IsDivisible has been renamed to IsDivisibleBy.

– The function SquareFree has been renamed to Squarefree and SquareFreeFactorization has
been renamed to SquarefreeFactorization; the old function names have been removed from the
documentation but kept in the executable to allow old code to continue to work for this release.

– The function ChineseRemainderTheorem or CRT taking three integers has been removed to avoid
confusion. (Solution still retains the original functionality.)

– The function ChineseRemainderTheorem or CRT taking three integer sequences has been changed so
that it now only takes two integer sequences (the original “multipliers” sequence is now considered
to consist of all ones). (Solution still retains the original functionality.)

Summary of new features:

– New Schönhage-Strassen FFT method for fast multiplication of very large integers.

– New asymptotically-fast division algorithm.

– The function IsSquare now works for any integer.

– New function Ilog to return the floor of the logarithm of an integer to a given integer base.

9



7.3 Finite Fields [HB 27]

Magma V2.4 contains a new packed representation for polynomials over GF(2) which is
used to represent elements of finite fields of characteristic 2. This has led to dramatic speed-
ups for computations within such fields. Magma V2.3 used a two-step representation where
a large field was represented as an extension field of a Zech representation field, but this
representation could only be used if the degree of the field had a suitable divisor and was
not too large. The prime factorization of the degree of the field is irrelevant in the new
representation so, for example, computation in fields of characteristic 2 with large prime
degree is now very much faster.

A database of sparse irreducible polynomials over GF(2) has been constructed for all
degrees up to 11000. Thus any finite field GF(2k), for k within this range, may be created
without any delay. The sparseness of the defining polynomial is utilized in the arithmetic.
Computation in fields such as GF(210000) and GF(210007) (10007 is prime) is now quite
feasible.

The Shoup algorithm for factoring polynomials over large finite fields has been imple-
mented in V2.4. Combined with the great improvements to the finite field arithmetic itself,
factorization over large finite fields is now very much faster in V2.4 than in previous ver-
sions. For example, factorizing a polynomial over GF(21000) is about 500–1000 [sic] times
faster in V2.4 than in V2.3. For fields of higher degree, the improvement is even greater.

On a 64-bit 200MHz SGI Origin 2000, the n = 2048 polynomial from the von zur
Gathen challenge benchmarks (of degree 2048 with sparse coefficients modulo a 2050-bit
prime) is factored by Magma V2.4 in about 18.8 hours and the n = 3000 polynomial from
the same benchmarks (of degree 3000 with sparse coefficients modulo a 3002-bit prime)
is factored by Magma V2.4 in about 75.8 hours. Also, the n = 2048 polynomial from
the Shoup challenge benchmarks (of degree 2048 with dense coefficients modulo a 2048-bit
prime) is factored by Magma V2.4 in about 36.0 hours on the same machine. (The times
taken for the same problems are about twice as long on a 250MHz Sun Ultrasparc.)

Summary of new features:

– New database of sparse irreducible polynomials over GF(2) for all degrees up to 11000 (accessed
by IrreduciblePolynomial(GF(2), d) and also used internally by functions such as the creation
function FiniteField).

– The arithmetic for univariate polynomials over finite fields, and arithmetic of medium-sized non-
prime fields has been sped up by use of FFT methods, etc. (see Univariate Polynomial Rings below).

– Using a new efficient packed representation, arithmetic with finite fields of characteristic 2 has been
dramatically improved.

– New Shoup factorization algorithm for polynomials over finite fields (automatically selected by
Factorization when appropriate or by a parameter).

– The computation of square roots of elements of finite fields of characteristic 2 has been sped up.

– The function FiniteField(p, n) now has a parameter Check; setting Check to false will cause the
function to skip the check that p is prime.

– New function NormEquation to solve norm equations in finite fields.

10



– New function AllRoots to return all n-th roots of a given element of a finite field.

– New function RootsInSplittingField(f), which, given a polynomial over a finite field K, com-
putes a splitting field S of f as an extension field of K, and returns the roots of f in S, together
with S.

– New function FactorizationOverSplittingField(f), which, given a polynomial over a finite field
K, computes a splitting field S of f as an extension field of K, and returns the factorization (into
linears) of f over S, together with S.

– New function Log(b, x) to compute the discrete logarithm of x to the base b, for any primitive
element b.

– New procedure SetPrimitiveElement(K, x) to set the internal primitive element of K to be x
(useful when computing many logarithms with respect to a particular base).

– The computation of discrete logarithms has been sped up (particularly for fields whose cardinality
is less than 1010). The function Log may now be applied to an element of any finite field of arbitrary
size. The Pohlig-Hellman algorithm for computing discrete algorithms is now combined with both
the Shanks baby-step/giant-step and Pollard-ρ algorithms. In V2.4, computing the logarithm of
any element of a field having cardinality less than 1010 takes less than a second, and computing the
logarithm of any element of a field where the largest prime divisor of the order of the multiplicative
group is 15 decimal digits now takes about 100 seconds (on a 250MHz Sun Ultrasparc).

7.4 Univariate Polynomial Rings [HB 28]

Magma V2.4 incorporates new fast methods for performing arithmetic with univariate
polynomials. These include two FFT-based methods for multiplication: the Schönhage-
Strassen FFT method where the coefficients are large compared with the degree, and the
small-prime modular FFT with Chinese remaindering method where the coefficients are
small compared with the degree. These new methods are applied to multiplication of
polynomials over the integer ring, the rational field, integer residue class rings and prime
finite fields. For some kinds of coefficients, at least one of the FFT methods beats the
Karatsuba method as low as degree 32 or 64; for all of the kinds of coefficients listed, the
FFT methods beat the Karatsuba method for degree 128 or greater.

An asymptotically-fast division algorithm (which reduces division to multiplication)
is now used for polynomials over all coefficient rings (similar to the algorithm used for
integers).

Factorization of univariate polynomials over all finite field types has been dramatically
improved—see the section on Finite Fields above.

Changes:

– The function SquareFreeFactorization has been renamed to SquarefreeFactorization; the old
function name has been removed from the documentation but kept in the executable to allow old
code to continue to work for this release.

Summary of new features:

– New Schönhage-Strassen FFT algorithm for multiplication of polynomials (with large coefficients).

– New small-prime modular FFT algorithm for multiplication of polynomials (with small coefficients).

11



– New asymptotically-fast division algorithm.

– Modular exponentiation sped up by use of pre-inversion of modulus and fast multiplication (and
thus leading to a speed up in all algorithms, such as factorization, which use this).

– New fast modular algorithm for the computation of the extended GCD of two univariate polynomials
over the rational field.

– Factorization of polynomials over all finite fields greatly improved—see the section on Finite Fields.

– New parameter Global for polynomial ring creation functions. This now allows the creation of
multiple non-global polynomial rings with different generator names.

– The function Evaluate for univariate polynomial rings has been changed and extended to use the
common over-ring of its arguments; this overcomes some previous confusing behaviour caused by
automatic coercion.

– The common over-structure of univariate polynomial rings is now supported for the first time (used
by automatic coercion).

– New function HasPolynomialFactorization(R) to determine whether factorization of polynomials
over the ring R is allowed in Magma.

– New function Valuation for univariate polynomials.

7.5 Multivariate Polynomial Rings [HB 29]

New algorithms for factorization of bivariate polynomials and general multivariate poly-
nomials over finite fields have been implemented. The previous implementations failed on
various inputs and were rather unsatisfactory.

Changes:

– The function Variety now returns a sequence of tuples.

– The function SquareFreeFactorization has been renamed to SquarefreeFactorization.

New features:

– The dimension of a full polynomial ring (considered as an ideal) is now defined to be −1, so the
functions Dimension, IsZeroDimensional, etc. may be applied to such.

– New improved algorithm for factorization of multivariate polynomials over finite fields.

– New fast algorithm for the computation of GCDs of multivariate polynomials over all fields of
characteristic zero using evaluation-interpolation techniques.

– New fast algorithm for factorization of multivariate polynomials over algebraic number fields (in-
cluding quadratic and cyclotomic fields) by better use of resultants.

– New function TriangularDecomposition to compute the triangular decomposition of zero-dimensional
ideals (algorithm of D. Lazard).

– The primary decomposition algorithm has been significantly improved by use of the triangular
decomposition algorithm together with other techniques.

12



7.6 Invariant Rings of Finite Groups [HB 30]

New features:

– The functions IsInvariant(f, g) and IsInvariant(f, G) have been documented for the first
time.

– The functions PrimaryAlgebra and PrimaryIdeal have been documented for the first time.

7.7 Algebraic Number Fields [HB 35]

The KANT number field machinery corresponding to Kash 1.9 has been installed. This
is the first major upgrade of the Magma general number field facility since Kash V1.6
was installed in early 1996. This version of KANT provides the Magma user with greatly
enhanced performance for many fundamental algorithms. Of particular note is the new
KANT maximal order algorithm that combines both the Round 2 and Round 4 methods.
Both conditional and unconditional computation of class groups has been greatly improved
and the result is far superior performance to that provided in previous versions of Magma.

Major new number field facilities available in Magma V2.4 (courtesy of KANT) are ray
class groups, S-unit groups, prime ideal decompositions of fractional ideals, automorphism
groups of normal and abelian extensions, solution of Thue equations, unit equations and
index form equations.

Changes:

– The function BetterPolynomial has been replaced by OptimizedRepresentation. The function
BetterPolynomial will remain for a transition period.

– The function MaximalOrder has new parameters reflecting changes to the underlying algorithm.

– The function ClassGroup has new parameters reflecting changes to the underlying algorithm.

– The number field function BetterPolynomial has been replaced by OptimizedRepresentation

which has slightly different semantics. The old function will be retained for compatibility in the
medium term.

– All number field functions that return (inexact) real or complex numbers have been changed so that
instead of returning fixed precision numbers, they now return free numbers (type FldPrElt).

New features:

– The function RadicalExtension allows easy construction of radical extensions.

– The function CompositeFields creates the composition of two number fields.

– The function SplittingField will construct the splitting field of a number field directly.

– The function RelativeField allows the construction of relative extensions.

– The function AbsoluteDegree gives the absolute degree of an order or number field.

– The functions IsNormal and IsAbelian test a number field for being a normal (respectively normal
abelian) extension of Q.

13



– The functions CharacteristicPolynomial and AbsoluteCharacteristicPolynomial give the char-
acteristic polynomial of a field element.

– The function Divisors, applied to an algebraic integer, returns all its divisors.

– The function Zeros gives the zeros of the defining polynomial of a field or order.

– The functions Index gives the index of an ideal in an over-order.

– The infix operator meet has been extended so as to compute the intersections of two ideals belonging
to an order.

– The function Decomposition, applied to a rational prime p, finds the factorization of p into prime
ideals in a designated order. If this function is applied to an order element a it finds the factorization
of a into prime ideals.

– The function InertiaDegree gives the degree of inertia of a prime ideal.

– The function Verify is provided for checking a conditional class group computation.

– Unconditional and conditional (GRH) computation of ray class groups is provided by the function
RayClassGroup.

– The function ClassRepresentative, applied to an ideal I belonging to an order whose class group
is known, will give the chosen representative of the ideal class containing I.

– The group of S-units corresponding to a set S of prime ideals is provided by the function SUnitGroup.

– Function TorsionUnitGroup gives the torsion part of the unit group of a number field or order.

– The machinery developed by Klüners for computing subfields has been greatly improved. It has
been sucessfully used to compute all subfields in an extension of degree 60.

– The functions Automorphisms and AutomorphismGroup provide for the calculation of the automor-
phism group of a normal extension.

– The machinery for solving Thue equations has been improved and an additional function ThueEval,
for evaluating the homogeneous form, is provided.

Bug fixes:

– A number of bugs present in V2.3 and earlier versions, and arising in the computation of class
groups, unit groups and testing ideals for being principal are fixed with the installation of the new
version of KANT.

7.8 Rational Function Fields, [HB 35]

New features:

– The function Evaluate for univariate function fields has been changed and extended to use the
common over-ring of its arguments; this avoids its previous confusing behaviour caused by automatic
coercion.

– New function Derivative for function field elements (4 separate signatures).

– New function PartialFractionDecomposition which computes the complete partial fraction de-
composition of a function field element. (PartialFractionDecomposition now factorizes fully and
the original functionality is now given by the function SquarefreePartialFractionDecomposition.)

– Coercion from one rational function field to a compatible field is now allowed and the common
over-structure of two function fields is computed correctly.

– New functions Degree, TotalDegree and WeightedDegree for function field elements.

14



7.9 Real and Complex Fields [HB 36]

New features:

– The function ExponentialIntegralE1 takes a real number r and calculates the principal value of∫ ∞

x

eu

u
du

at x = r.

Bug fixes:

– A bug in Xavier Gourdon’s root finding program in the case of badly conditioned polynomials has
been fixed.

7.10 Formal Series [HB 37]

The module for computing with formal series has been completely rewritten for Magma
V2.4. Many bugs and leaks have been removed in the process.

The arithmetic for series over the rational field is generally 5 times faster (as a conse-
quence of the use of fraction-free methods). Asymptotically-fast methods for arithmetic
are now used for the first time (based on the new integer and polynomial methods). The
10000-th Bernoulli number B10000 may be computed in about 14 hours on a 250MHz Sun
Ultrasparc directly from its generating function.

New features:

– Series with fractional exponents are now available. Arbitrary exponent denominators are allowed
and such series may be freely mixed. Practically all series functions apply to series with fractional
exponents if the result is meaningful and computable.

– The new category names for series rings and series are: RngSerPow (power series ring), RngSerPowElt
(power series), RngSerLaur (Laurent series ring), RngSerLaurElt (Laurent series), RngSerPuis

(Puiseux series ring), RngSerPuisElt (Puiseux series), RngSerPuis (any series ring), RngSerPuisElt
(any series).

– The functions PowerSeriesAlgebra and LaurentSeriesAlgebra have been removed; the new cre-
ation functions are PowerSeriesRing, LaurentSeriesRing and PuiseuxSeriesRing.

– New parameter Global for series ring creation functions. This now allows the creation of multiple
non-global series rings with different generator names.

– New function ExponentDenominator to return the denominator of exponents of a Puiseux series.

– New functions LeadingCoefficient and LeadingTerm.

– The function Reversion now works (for the first time) in the case of fields having non-zero charac-
teristic and for series with general positive valuation.

– Intrinsics for the inverse trigonometric functions Arcsin, Arccos and Arctan and inverse hyperbolic
functions Argsinh, Argcosh, Argtanh have been installed.

– Intrinsics for the trigonometric functions Sec, Cosec and Cot have been installed.

15



– The intrinsic function HypergeometricSeries is provided for computing hypergeometric series.

– New functions AGM, Gamma, LogGamma and Polylog.

– New intrinsic functions for computing with Elliptic and Modular functions have been implemented:
Jacobi θ (JacobiTheta), Dedekind η (DedekindEta), j-invariant (jInvariant), ∆ function (Delta),
Eisenstein function (Eisenstein) and Weierstrass ℘-function (WeierstrassSeries).

8 Modules

8.1 Vector Spaces and R-spaces [HB 40]

New features:

– New function Moduli to return the column moduli of an R-space over a Euclidean domain.

8.2 R-Modules [HB 41]

New features:

– Function SingleMinimalSubmodule documented for the first time.

9 Algebras

9.1 Group Algebras [HB 49]

Changes:

– The sub-constructor for group algebras now returns a sub-group algebra (in category AlgGrpSub)
instead of an associative algebra. This is more natural.

– Ideals and subalgebras now make use of generators resulting in a very considerable speed-up in
closure operations.

9.2 Matrix Algebras [HB 50]

New features:

– Genuine 64-bit versions for packed matrices over GF(2) have been implemented for 64-bit machines.

– The function Adjoint now works over any ring which has an exact division algorithm (and is now
correct for the first time!).

– A matrix algebra element over a ring R is now coercible into a matrix group over another ring S if
elements of R are coercible into S.

16



10 Geometry

10.1 Elliptic Curves [HB 52]

The facilities for elliptic curves have undergone major expansion. Noteworthy is the in-
troduction of general machinery for working with isomorphisms, isogenies and rational
maps between curves. The implementation introduces new data types for such things as
subgroups and subschemes of elliptic curves. The image of a subgroup under an isogeny
(whose kernel is contained in the subgroup) can be calculated, an operation which is used
to construct an isogeny from its kernel but is also of independent interest.

The implemented functions together form a powerful toolkit for working with ellip-
tic curves. The interplay between elliptic curves, isogenies and subgroups is particularly
beneficial. The toolkit allows comparatively easy computation of structures such as the
endomorphism ring of a curve over a finite field and the eigenvalues of the Frobenius
automorphism (the latter being useful in point-counting).

Changes:

– The category name for elliptic curves has been changed to CurveEll and the category name for
elliptic curve points has been changed to CurveEllPt.

10.1.1 General Elliptic Curves

New features:

– Extension and lifting of curves induced by maps of base rings: BaseExtend, ChangeRing.

– Division polynomials and m-torsion subgroups: DivisionPolynomial. mTorsionSubgroup.

– The (starred) modular equations are currently available for all primes in the range 23 to 293:
ModularEquation.

– Order of a point an elliptic curve: Order.

– The ζ-function of an elliptic curve at a given prime: ZetaFunction.

– Creation of isogenies, isomorphisms, rational maps between curves and translation maps on a curve:
Morphism, Isogeny, Automorphism, TranslationMap and RationalMap.

– Velu’s formula for constructing an isogeny with a given kernel: IsogenyFromKernel, and
IsogenyFromKernelFactored.

– Polynomials defining isogenies: IsogenyMapOmega, IsogenyMapPhi, IsogenyMapPhiMulti,
IsogenyMapPsi.

– Kernel and image of an isogeny as subgroups, image and preimage of a subgroup under an isogeny:
Kernel, PushThroughIsogeny, etc.

– Operations with isogenies: degree, composition, construction with given kernel, Frobenius endo-
morphism: Degree, etc.

– Operations with isomorphisms: inverses, composition.

– Test whether two elliptic curves are isogeneous or isomorphic: IsIsogenous and IsIsomorphism.

17



– Subgroups of an elliptic curve as a type: Subgroup, Order, mTorsionSubgroup and RationalPoints.

– Subschemes of an elliptic curve as a type: Subscheme, DefiningIdeal, and RationalPoints.

– The database of elliptic curves having conductor up to 5300 constructed by John Cremona is now
included: CremonaDatabase and many others.

10.1.2 Elliptic Curves over Finite Fields

In V2.4 the computation of the order of an elliptic curve over a finite field is performed
using the plain Schoof algorithm (with the restriction that the characteristic of the field
must be greater than 3). An efficient implementation of the Schoof-Elkies-Atkin-Lercier
algorithm is under development and will be available in Magma V2.5.

New features for elliptic curves over finite fields:

– Plain Schoof algorithm for counting the points on a curve over a field having characteristic greater
than 3 Order.

– Trace of a curve (function Trace).

– Random point of a curve (function Random).

– Quadratic twist of a curve (function QuadraticTwist).

– Non-deterministic tests for deciding whether a curve is supersingular: IsProvenSupersingular,
IsProbablyOrdinary.

– Enumeration of all points of a curve (for small fields).

– Function ModularEquation to return Atkin’s variation of the modular polynomial for a given prime
p.

11 Incidence Structures

11.1 Enumerative Combinatorics [HB 53]

Changes:

– The function BernoulliNumber has been sped up very significantly by the use of power series (with
asymptotically-fast arithmetic).

11.2 Incidence Structures and Designs [HB 55]

Changes:

– Most point and block functions now take an extra argument: the incidence structure in which
the operation should be performed. This allows for more flexibility when working with incidence
structures, and makes the incidence structure module more consistent with others such as groups.

New features:

– New function HadamardNormalize to normalize a Hadamard matrix to have only ones in the first
row and first column.

– New function HadamardAutomorphismGroup to compute the automorphism group of a Hadamard
matrix.

18



11.3 Finite Planes [HB 56]

Facilities for subplanes of finite projective and affine planes have been improved so as
to make working with planes and subplanes much easier.

Changes:

– Most point and line functions now take an extra argument: the incidence structure in which the
operation should be performed. This allows for more flexibility when working with planes and makes
the module compatible with others.

– The following plane intrinsics have changed to accept the plane in which the operation should be per-
formed as the first argument: AllPassants, AllSecants, AllTangents, CentralCollineationGroup,
Conic, ContainsQuadrangle, Coordinates, Exterior, ExternalLines, Index, Interior, IsArc,
IsCollinear, IsComplete, IsConcurrent, IsParallel, IsUnital, Knot, ParallelClass, Pencil,
QuadraticForm, Support, Tangent, UnitalFeet.

11.4 Error-correcting Codes [HB 57]

New features:

– The function IsEquivalent has been documented for the first time.

19


