
Summary of New Features in Magma V2.24
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1 Introduction

This document provides a terse summary of the new features released as part of Magma
versions V2.24 (August 2018).

A small number of new features were exported in patch releases prior to the main release
of V2.24 in August 2018 and these are also listed here for completeness. Only significant
bugfixes are noted here – for a more complete list of bugfixes the reader should consult the
patch release change log for V2.23-x.

Recent releases of Magma were: V2.23 (July 2017), V2.22 (May 2016), V2.21 (December
2014), V2.20 (December 2013), V2.19 (December 2012), V2.18 (December 2011), V2.17
(December 2010), V2.16 (November 2009), V2.15 (December 2008), V2.14 (October 2007).

2 Highlights

Arithmetic Geometry

• Riemann Surfaces

– A package for computing with Riemann surfaces defined by an affine equation
f(x, y) = 0 is currently being implemented by Christian Neurohr. The algo-
rithms are described in his 2018 PhD thesis at Universität Oldenburg. This
package will not be part of the V2.24 release but instead will be included in an
upcoming patch release.

The main focus is on approximating period matrices and the Abel-Jacobi map
of divisors using numerical integration up to a prescribed precision. An object
of Riemann surface type is defined by an irreducible polynomial f ∈ K[x, y]
and P , where K is Q or a number field, and P is a complex embedding or in
the superelliptic case by f = ym − h(x) with h ∈ C[x] squarefree and m > 1.
Working with a precision of hundred decimal digits is practical in the general
case and several thousand digits in the superelliptic case.
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• Hypergeometric Motives

– A new package for computing associated schemes in product projective spaces
has been contributed by Bartosz Nasrecki. In typical cases this allows a reduc-
tion in the dimension of the resulting variety, via detection of zerosum-subsets
of the list of gamma parameters. Although finding such zerosum-subsets is an
NP-hard problem in general, in our specific cases we can exploit various sym-
metries (working in fact with zerosum-submultisets) to realize a reasonably fast
solution. For instance, it takes about one minute to compute the associated
schemes for all the 8444 examples of degree 8 hypergeometric data. The typical
reduction of the dimension is 4, but can be as much as 18.

– The HypergeometricTraceK intrinsic, applicable for non-Galois data and/or
parameter specializations at non-rationals, has been improved and documented.

– A number of identifications of weight 0 motives as Artin representations has
been contributed by Bartosz Nasrecki. This includes all examples up through
degree 5.

Arithmetic Fields

• Galois Groups

– Code has been added to compute the geometric Galois group of a polynomial
over Q(t).

– A new intrinsic provides information about the set of exceptions to Hilbert’s
Irreducibility Theorem in the case of polynomials having coefficients that are
rational functions over the rational field.

Basic Rings and Fields

• Polynomial Rings

– New parameter DegreeLimit:=D added to Factorisation for univariate poly-
nomials so that only irreducible factors with degree at most the given bound D
are returned (this can lead to large speedups for certain base rings).

– The von zur Gathen/Kaltofen/Shoup algorithm for factoring polynomials in
K[x], where K is a finite field, has been improved by better use of the Brent-
Kung algorithm. The speedup is up to a factor of 2 when factoring polynomials
over medium-sized finite fields.

– The general factorisation algorithm for univariate polynomials over Z or Q has
been sped up for several types of input, by improvement of the general strategy
(especially for recursively-defined rings with several levels).
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– The resultant algorithm has been greatly improved for polynomials defined over
residue rings with zero divisors and similar generic commutative rings (by use
of the Berkowitz-based determinant algorithm).

– The resultant algorithm has been sped up in the case where the coefficients lie
in a subring.

Coding Theory

Major improvements have been made to the fundamental minimum weight and weight
distribution algorithms.

• Linear Codes over Finite Fields

– For linear codes over GF(2), the minimum weight algorithm has been greatly
sped up. For codes of length up to 256 and relatively large dimension, the
speedup can be a factor of about 15, while for codes of much longer length,
the speedup is typically 5 to 10. The related functions for finding the words of
minimum weight or words of bounded weight, etc. have similar speedups. As
an example, the minimum weight of the [193, 97] quadratic residue code over
GF(2) is proven to be 27 in about 2.7 days on a single 2.3GHz 36-core Intel
E5-2699 v3 CPU (this is 15.5 times faster than Magma V2.23).

– For linear codes over Z4 or GF(q) (q > 2), the minimum weight algorithm has
been sped up by a factor of 1.5 to 2, typically. There are similar speedups for
the enumeration of the words of minimum weight, etc.

– For linear codes over GF(2), the algorithm for determining the weight distribu-
tion has been sped up, typically by a factor of about 5. Speedups for determining
the weight distribution over Z4 and other finite fields have also been achieved.

– Multiple threads are now supported for the minimum weight algorithm (and
all the above related algorithms) for linear codes defined over Z4 and GF(q)
(q > 2). Only the GF(2) case had been supported previously. The times which
are printed as the algorithm progresses (with the verbose flag turned on) are
now real (wall clock) times.

– Multiple threads are now supported for computing weight distribution of linear
codes for all base rings.

– The MacWilliams Transform algorithm has been considerably sped up.
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Commutative Algebra

• Gröbner Bases

– The dense Gröbner basis linear algebra phase has been improved, both for the
GF(2) and GF(p) cases (medium prime p). The general strategy has been
improved too.

– The FGLM GB monomial order change algorithm has been non-trivially im-
proved for ideals defined over medium prime finite fields.

– Better support has been developed for fast GB computations for ideals defined
over number fields defined in terms of multiple relative extensions.

• Ideal Arithmetic

– Several major improvements have been made to the primary decomposition
algorithm.

– Major improvements have been made to the algorithms for computing intersec-
tions of ideals and colon ideals of the form I : J .
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Group Theory

• Finitely-Presented Groups

– An intrinsic has been added which given an fp-group G and an epimorphism from
G onto a permutation group, applies the Holt-Plesken criteria in an attempt to
prove that G is infinite.

– Improvements have been made to the package that attempts to prove that a
given fp-group is infinite by searching for suitable epimorphisms of G onto per-
mutation groups and then applying the Holt-Plesken criteria (intrinsic
IsInfiniteFPGroup).

– In V2.23 code developed by Derek Holt for attempting to show that a finitely-
presented group is word-hyperbolic was released. The method is based on a
forthcoming paper by Holt, Linton, Neunhöffer, Parker, Pfeiffer and Roney-
Dougal, provisionally entitled A new approach to proving hyperbolicity. As the
test is somewhat difficult to apply, much more extensive Handbook documen-
tation, including a number of new examples, is provided in this release.

• Classical Groups

– Fast computation of the conjugacy classes in finite unitary groups based on the
use of class invariants is now provided. The new code computes the conju-
gacy classes for subgroups of the general unitary group that contain the special
unitary group by first enumerating class invariants and then finding a represen-
tative matrix for each invariant. There is no restriction on the characteristic of
the field.

The finite classical groups for which this method is now implemented are:

∗ Groups containing the special linear group;

∗ Subgroups of the conformal symplectic group that contain the symplectic
group in odd characteristic;

∗ The conformal unitary group;

∗ Subgroups of the general unitary group that contain the special unitary
group;

∗ The general orthogonal groups in odd characteristic;

∗ The conformal orthogonal groups in odd characteristic.
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Linear Algebra and Module Theory

• Linear Algebra over Finite Fields

– The base algorithm for matrix multiplication in moderately small dimension has
been greatly improved for matrices over GF(q) for q = 2, 3, 4, 5, 7. For example,
matrix inversion over GF(2) in dimension up to 128 is roughly 3 to 4 times faster
on a typical Intel Core CPU.

– The base algorithm for matrix echelonisation has been greatly improved in gen-
eral for matrices of small to medium size with entries in GF(q) for q = 2, 3, 4, 5, 7.
For example, matrix inversion over GF(2) in dimension up to 1000 is roughly 3
to 4 times faster on a typical Intel Core CPU.

– Matrix multiplication over GF(p) for p = 3, 5, 7 has been significantly improved
(for all matrix sizes) in the AVX version.

• Linear Algebra over General Rings

– The recursive echelon algorithm has been improved in the case that a transfor-
mation matrix is required. This also yields improvements to many algorithms
which depend on this, including the computation of the inverse of a matrix.

– The Hermite normal form algorithm for matrices over the integer ring has been
improved for some types of matrix where there are many non-trivial repeated
elementary divisors.

– New interpolation-based algorithms have been implemented for computing the
determinant and characteristic or minimal polynomial of matrices over a ring
R, where R is a integer or polynomial residue ring, or a polynomial ring over
such a ring. These are much faster than the previous generic algorithms when
applied to matrices of non-trivial sizes.

– The worst-case exponential-time algorithm for computing the characteristic
polynomial of a matrix defined over a general commutative ring has been re-
placed with the Berkowitz algorithm, which takes O(n4) ring operations for an
n×n matrix. In particular, this speeds up the computation of the characteristic
polynomial of a matrix defined over a ring with zero divisors.

– A new generic polynomial-time determinant algorithm has been implemented,
based on the Berkowitz algorithm above. This algorithm is applicable to rings
with zero divisors for which there is no standard Gaussian elimination-based
algorithm available, and is much faster in higher dimensions than the generic
exponential algorithm which was previously used.

– New functions RowWeights and ColumnWeights have been provided for dense
matrices.
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Representation Theory

• KG-Modules

– A package implemented by Peter Brooksbank, based on a new algorithm due
to him and Eugene Luks for testing two A-modules for isomorphism, has been
installed. The algorithm is superior to the previous algorithm in the case of
difficult reducible A-modules.

– Isomorphism of difficult reducible KG-modules is now decided using the
Brooksbank-Luks algorithm (see above) resulting in much reduced runtimes.

– Intrinsics are now provided for computing vertices and sources for KG-modules,
where K is a finite field.

– An intrinsic for computing the injective hull of a KG-module over a finite field
has been installed. This algorithm was suggested by Dave Benson and imple-
mented by Derek Holt.

– It is now possible to partition, into blocks, the set of projective indecomposable
KG-modules, where K a finite field.

– The composition factors of the modules obtained by taking the quotients of each
pair of adjacent terms of the socle series for a KG-module, K a finite field, can
now be displayed.

System

• Magma Startup

– The startup time for Magma has been greatly reduced; it is now typically only
0.02 seconds on a standard Linux installation. This allows many very short
successive Magma jobs (called from perl/shell scripts, etc.) to be run much
more efficiently.
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3 Algebraic Geometry

3.1 Schemes

Changes and Removals:

– Blowup has been corrected so that extra linear components, which occasionally appeared before
and are not mathematically part of the actual blow-up, no longer appear. In relation to this, a
new parameter Xirred has been added to the intrinsic. It allows a simplification of the saturation
process that removes the extra components.

– The Blowup function has been sped up.

– The computation of images of subschemes under scheme maps now makes use of alternative defining
polynomials for the map. These were previously only used for images of points. Now the image of
a subscheme that has components which lie in the base scheme of the primary defining polynomials
but are covered by a set of alternative defining polynomials correctly contains the images of these
components.

Bug Fixes:

– A crash in the application of the PolynomialMap of a Linear system a sequence of vectors has been
fixed. (V2.23-8)

– A bug in the Rees Ideal computational part of Blowup, which was causing some runtime errors, has
been fixed. (V2.23-10)

– An internal problem with ambients that are the product of an affine and ordinary projective space
has been fixed. This was causing a number of errors and crashes when working with subschemes of
these ambients. (V2.23-10)

3.2 Algebraic Curves

Changes:

– The Flexes and InflectionPoints intrinsics now work for affine as well as projective plane curves.
(V2.23-10)

Bug Fixes:

– A check has been added to ensure that a curve has a function field before a divisor of the curve can
be constructed. (V2.23-10)

– A bug in Degree for non-constant maps between curves which caused errors when the domain of
the map was not of Crv type has now been fixed. (V2.23-10)

– A bug has been fixed in Automorphisms and AutomorphismGroup which was producing internally-
inconsistent automorphisms for curves or function fields over a finite field defined as a non-standard
extension of the ground field GF(p). This was causing runtime errors in a number of examples.
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4 Arithmetic Geometry

4.1 Riemann Surfaces

A package for computing with Riemann surfaces defined by an affine equation f(x, y) =
0 that is currently being implemented by Christian Neurohr will be distributed in an
upcoming patch release. The algorithms are described in his 2018 PhD thesis at Universität
Oldenburg:
https://oatd.org/oatd/record?record=oai%5C%3Aoops.uni-oldenburg.de%5C%3A3607.

Features:

– The package introduces a Riemann surface type RieSrf together with types for points RieSrfPt

and divisors DivRieSrfElt.

– An object of Riemann surface type is defined by in one of two ways:

– As a general curve defined by an irreducible polynomial f ∈ K[x, y] and a mapping P where
K is Q or a number field, and P is a complex embedding;

– As a superelliptic curve defined by f = ym − h(x) with h ∈ C[x] squarefree and m > 1.

– Working with a precision of several hundred decimal digits is practical in the general case and
several thousand digits in the superelliptic case.

– Period matrices and the Abel-Jacobi map of superelliptic curves will be much faster than the general
ones.

– Several different algorithms for numerical integration are available, namely: Double-exponential,
Gauss-Legendre or Clenshaw-Curtis quadrature in the general case and double-exponential or Gauss-
Jacobi quadrature in the superelliptic case.

– The most important intrinsics for Riemann surfaces are: RiemannSurface, SmallPeriodMatrix,
BigPeriodMatrix, FundamentalGroup, AnalyticContinuation, MonodromyRepresentation,
HomologyBasis, and AbelJacobi.

– Intrinsics that perform numerical integration are: GaussJacobiIntegrationPoints,
GaussLegendreIntegrationPoints, ClenshawCurtisIntegrationPoints,
DiscreteFourierTransform, and TanhSinhIntegrationPoints.
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4.2 Rational Curves and Conics

Bug Fixes:

– A problem with reducible input was fixed. (V2.23-6)

4.3 Elliptic Curves

4.3.1 Elliptic Curves over Number Fields

Bug Fixes:

– The MordellWeilGroup machinery (including also Saturation and MordellWeilShaInformation)
should now work for non-integral models (over number fields) and also over non-absolute extensions.
(V2.23-10)

4.3.2 Elliptic Curves over Finite Fields

Bug Fixes:

– A bug with the SEA point-counting algorithm over finite fields defined by relative extensions was
fixed. (V2.23-2)

4.4 Hyperelliptic Curves and Jacobians

New Features:

– The function TwoCoverDescent has been improved by M. Stoll. Also, a new parameter Points has
been added, which can be set to a set of rational points on the curve, to be used for an early exit
when the given points exhaust the upper bound for the Selmer set computed so far. (V2.23-5)

Bug Fixes:

– The 3rd return value of the function AutomorphismGroup has been fixed for hyperelliptic curves.
(V2.23-5)

– An incorrect answer for ToAnalyticJacobian at Weierstrass points has been corrected. (V2.23-6)

– A possible crash when trying to make sequences of tuples containing points from incompatible
hyperelliptic curves has been fixed. (V2.23-8)

– A problem with heights (derived from Kummer surface computations) for torsion points on the
Jacobians was fixed. Also, the height is now returned as zero to the user (rather than default)
precision. (V2.23-9)

– A fix to LPolynomial and ZetaFunction for hyperelliptic curves which don’t have type CrvHyp has
been made. (V2.23-10)
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4.5 Hypergeometric Motives

New Features:

– The HypergeometricTraceK intrinsic, applicable for non-Galois data and/or parameter specializa-
tions at non-rationals, has been improved and documented. (V2.23-2)

– The intrinsic MonodromyGroup was added. (V2.23-10)

Bug Fixes:

– A problem with a non-integral wild Euler factor was fixed. (V2.23-6)

– Identifying a hypergeometric motive which is a hyperelliptic curve now automatically sets the Lo-
calData parameter to “Ogg” in its L-series. (V2.23-7)

– The EulerFactor intrinsic now immediately raises a size error when the prime powers would be
too large, rather than incrementally computing until an error occurs. (V2.23-10)

– Some problems with unbalanced hypergeometric data (used in computing guesses for wild primes)
were fixed. (V2.23-10)

– Minor problems with “common factors” were fixed in some intrinsics. (V2.23-10)

– Some discrepancies with ComplexEvaluation, and its underlying usage in Grossencharacter were
fixed.

4.6 L-Series

Bug Fixes:

– Taking an EulerFactor of the trivial (unital) L-series no longer gives an error. (V2.23-7)

– A fix to LPolynomial and ZetaFunction for hyperelliptic curves which don’t have type CrvHyp
has been made. (V2.23-10)

4.7 Modular Forms

Bug Fixes:

– A crash in DualHeckeOperator has been fixed. (V2.23-4)

4.8 Arithmetic Fuchsian Groups

Bug Fixes:

– A bug with FundamentalDomain when an isometric circle meets the real axis at a right angle was
fixed. (V2.23-7)
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5 Arithmetic Fields (Global)

5.1 Dirichlet and Hecke Characters

Bug Fixes:

– Some problems with coercion of the trivial character were fixed, and the code now caches ideals to
ensure compatability. (V2.23-5)

– The evaluation functions previously coerced 1 and -1 to the Integers; this has been removed in the
case that the evaluations are not elements of a cyclotomic field in the first place, thus making the
usage of SetTargetRing (e.g. for a finite field) give more uniform answers. (V2.23-7)

5.2 Algebraic Number Fields

New Features:

– Several attributes for orders and ideals have been added. These allow the retrieval of known infor-
mation without computing such information if it is not known, which can be done using the relevant
intrinsics. These attributes are MaximalOrder and ArithmeticField for orders and BasisMatrix,
IsPrime, PartialFactorization, InertiaDegree and RamificationIndex for ideals.

Changes and Removals:

– More information is passed on where possible when an ideal is constructed from another ideal.

– The OptimizedRepresentation of a FldRat is now available.

Bug Fixes:

– The PowerRelation intrinsic now ensures its output is monic, and there is some attempt to remove
superfluous factors in it too. (V2.23-2)

– The GenusField intrinsic has been corrected in some cases where the original abelian extension is
not absolutely abelian. (V2.23-6)

– Computing an order from a sequence of elements in a number field represented as a tower of
extensions has been fixed. (V2.23-6)

5.2.1 Cyclotomic Fields

Bug Fixes:

– A deletion problem with cyclotomic fields has been fixed. This was seen during computations with
character tables and class groups. (V2.23-5)
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5.3 Characters and Artin Representations

New Features:

– A new intrinsic RationalDecomposition of an Artin representation has been added, its usage
parallelling that of RationalCharacterTable. In particular, the resulting characters are rational-
valued (not rationally represented).

Bug Fixes:

– An incorrect answer (due to too low of precision) for various Frobenius computations (particularly
at 2) has been fixed. (V2.23-7)

– The Minimize intrinsic should no longer return false when the vararg Optimize is false and the
result did not change.

5.4 Algebraic Function Fields

New Features:

– The p-adic Development of an algebraic function can now be computed, giving an algebraic function
as a combination of powers of a prime.

– Several attributes for orders and ideals have been added. These allow the retrieval of known infor-
mation without computing such information if it is not known, which can be done using the relevant
intrinsics. These attributes are MaximalOrder and ArithmeticField for orders and BasisMatrix,
IsPrime, PartialFactorization, InertiaDegree and RamificationIndex for ideals.

Changes and Removals:

– Improvements have been made to the quotients of orders of function fields. (V2.23-3)

– The product of an ideal in 2-element representation with itself is now returned in 2-element repre-
sentation.

– An ideal constructed using ideal< | > where the right hand side contains a sequence of 1 or 2
elements is now handled the same as if the elements were not in a sequence, that is, the ideal
will be constructed as principal or in 2 element representation rather than a basis be computed
immeadiately.

– More information is passed on where possible when an ideal is constructed from another ideal.

Bug Fixes:

– A fix has been made to ClassNumber of a function fields to avoid division by zero. (V2.23-11)

– The degree of the different divisor has been fixed for fields having more than 2 relative extensions
in their representation. (V2.23-11)
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5.5 Galois Groups

New Features:

– The intrinsic GeometricGaloisGroup computes the geometric Galois group of a polynomial over
Q(t).

– The intrinsic HilbertIrreducibilityCurves provides information about the set of exceptions to
Hilbert’s Irreducibility Theorem for polynomials with coefficients that are rational functions over
the rational field.

Bug Fixes:

– A precision check in the computation of Galois groups of reducible polynomials over Q(t) has been
fixed. (V2.23-2)

– The computation of subfields and Galois groups was improved by a refined cycle type analysis.
(V2.23-8)

– An infinite loop has been broken in the computation of a prime, which does not divide the discrim-
inant of the defining polynomial of any subfield, to use in the computation of a Galois group of a
polynomial over a function field. (V2.23-8)
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6 Arithmetic Fields (Local)

6.1 p-adic Rings and their Extensions

Bug Fixes:

– A bug with coercion of rational zeros into a p-adic field has been fixed. Such an p-adic number
could be created, but would not be correctly be recognized as zero in comparisons. (V2.23-2)

– A fix has been made to the Factorization of polynomials over local rings. (V2.23-4)

– Zeroth powers of zero are now 1 instead of an imprecise zero. (V2.23-6)

– A bug in testing whether a polynomial is inertial has been fixed. (V2.23-8)

– The Eltseq of infinite valuation zeros has been fixed. (V2.23-9)

– The NumberOfExtensions intrinsic did not correctly adjust for non-absolute input. (V2.23-9)

– Compatibility checking has been improved in NormGroup. (V2.23-10)

– A finite precision is now checked for in UnitGroup. (V2.23-10)

– Error checking of input to Exp has been improved. (V2.23-11)

– For elements in a tower of extensions which includes a ramified extension Exp has been corrected
to no longer return a zero as the result of intermediate overflow.

6.2 Series Rings

Bug Fixes:

– An error from the Roots computation for polynomials over infinite precision series rings about not
enough precision available has been resolved by the fixing of a bug in the computation of GCDs of
polynomials over series rings. (V2.23-3)

– A fix has been made to the Roots computation for polynomials over series rings whose degree is
the characteristic of the coefficient ring. (V2.23-4)

– The computation of GCDs of polynomials over series rings one of whose degrees is greater than the
precision of the ring has been fixed.
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7 Basic Rings and Fields

7.1 Integer Ring

Bug Fixes:

– The upper limit on PrimesUpTo has been changed so that a crash no longer ensues. (V2.23-5)

7.2 Real and Complex Fields

Bug Fixes:

– A problem with epsilonic real/imaginary parts of Roots was fixed, so that IsReal should now work
as previously. (V2.23-6)

7.3 Polynomial Rings

New Features:

– New parameter DegreeLimit:=D added to Factorisation for univariate polynomials so that only
irreducible factors with degree at most the given bound D are returned (this can lead to large
speedups for certain base rings).

– The von zur Gathen/Kaltofen/Shoup algorithm for factoring polynomials in K[x], where K is a
finite field, has been improved by better use of the Brent-Kung algorithm. The speedup is up to a
factor of 2 when factoring polynomials over medium-sized finite fields.

– The general factorisation algorithm for univariate polynomials over Z or Q has been sped up for
several types of input, by improvement of the general strategy (especially for recursively-defined
rings with several levels).

– The resultant algorithm has been greatly improved for polynomials defined over residue rings with
zero divisors and similar generic commutative rings (by use of the Berkowitz-based determinant
algorithm).

– The resultant algorithm has been sped up in the case where the coefficients lie in a subring.

Bug Fixes:

– A missing error check has been included to ensure that divisors are non zero when using div.
(V2.23-8)

16



8 Coding Theory

8.1 Linear Codes: Minimum Weight and Weight Distribution

Some major improvements have been made to the fundamental minimum word and weight
distribution algorithms.

New Features:

– For linear codes over GF(2), the minimum weight algorithm has been greatly sped up. For codes of
length up to 256 and relatively large dimension, the speedup can be a factor of about 15, while for
codes of much longer length, the speedup is typically 5 to 10. The related functions for finding the
words of minimum weight or words of bounded weight, etc. have similar speedups. As an example,
the minimum weight of the [193, 97] quadratic residue code over GF(2) is proven to be 27 in about
2.7 days on a single 2.3GHz 36-core Intel E5-2699 v3 CPU (this is 15.5 times faster than Magma
V2.23).

– For linear codes over Z4 or GF(q) (q > 2), the minimum weight algorithm has been sped up by
a factor of 1.5 to 2, typically. There are similar speedups for the enumeration of the words of
minimum weight, etc.

– For linear codes over GF(2), the algorithm for determining the weight distribution has been sped
up, typically by a factor of about 5. Speedups for determining the weight distribution over Z4 and
other finite fields have also been achieved.

– Multiple threads are now supported for the minimum weight algorithm (and all the above related
algorithms) for linear codes defined over Z4 and GF(q) (q > 2). Only the GF(2) case had been
supported previously.

As before, the parameter Nthreads := n can be used to specify n threads for the individual call,
or the procedure statement SetNthreads(n); can be used to specify n threads for all uses of the
above algorithms.

– Multiple threads are now supported for computing weight distribution of linear codes for all base
rings (via Nthreads or SetNthreads as above).

– The MacWilliams Transform algorithm has been considerably sped up.

8.2 Linear Codes over Finite Rings

This release contains an update of the package for linear codes over Z4, which is being
developed by Merce Villanueva and the Combinatoric, Coding and Security Group (CCSG)
at the Universitat Autònoma de Barcelona. It includes the following new intrinsics:-

New Features: Barcelona:

– StandardFormDual: The dual of a permutation-equivalent code S in standard form,

– MinRowsParityCheckMatrix: A parity check matrix for the code C over Z4 of length n and type
2γ4δ, with the minimum number of rows.

– DualZ4: The dual D of the code C over Z4 of length n.

– PermutationGroup: The permutation group G of the linear code C of length n over the ring R,
where G is the group of all permutation-action permutations which preserve the code.
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– PermutationGroupGrayMapImage: Given a code C over Z4 of length n, return the permutation
group Gbin of Cbin = Φ(C), where Gbin is the group of all permutation-action permutations which
preserve the binary code Cbin of length 2n and Φ is the Gray map. Thus, only permutation of
coordinates is allowed, and the degree of Gbin is always 2n.

New Features: Sydney:

– For linear codes over Z4, the single processor minimum weight algorithm has been sped up by a
factor of 1.5 to 2, typically. There are similar speedups for the enumeration of the words of minimum
weight etc. Speedups have also been achieved for determining the weight distribution.

– Multiple threads are now supported for the minimum weight algorithm, the word enumeration
algorithm and the weight distribution algorithm for linear codes defined over Z4.
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9 Commutative Algebra

9.1 Gröbner Bases

New Features:

– The dense Gröbner basis (GB) linear algebra phase has been improved, both for the GF(2) and
GF(p) cases (medium prime p). The general strategy has been improved too.

– The FGLM GB monomial order change algorithm has been non-trivially improved for ideals defined
over medium prime finite fields.

– The FGLM GB monomial order change algorithm has been very greatly improved for ideals defined
over rational function fields, by use of fraction-free methods in the linear algebra operations.

– Better support has been developed for fast GB computations for ideals defined over number fields
with multiple relative extensions.

Bug Fixes:

– A crash in the F4 algorithm which arose when calling the function ProbableRadicalDecomposition

has been fixed. (V2.23-12)

– A hang in the Gröbner Walk algorithm with ideals containing dense polynomials has been fixed.
(V2.23-12)

– A rare incorrect result in the F4 algorithm for ideals defined over medium characteristic finite fields
has been fixed. (V2.23-12)

– A rare crash in the F4 algorithm for ideals over number fields has been fixed.

9.2 Ideal Theory

New Features:

– Several major improvements have been made to the primary decomposition algorithm. These in-
clude:

1. A major speedup in the algorithm for the decomposition of zero-dimensional ideals over ra-
tional function fields.

2. A new heuristic which is applicable to radical multivariate polynomial ideals of positive di-
mension. Several decompositions of radical ideals which previously took a large amount of
time are now done very quickly. Such ideals occur often, particularly when working with plane
curves.

– Major improvements have been made to the algorithms for computing intersections of ideals and
colon ideals of the form I : J .

9.3 Modules over Multivariate Polynomial Rings

New Features:

– The Regularity intrinsic that computes the Castelnuevo-Mumford regularity of a graded module
has been updated to handle the dimension zero (Artinian) case much more efficiently, using only
the Hilbert series rather than the full Betti table.
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10 Groups

10.1 Finite Groups

Changes:

– An update of algorithms for computing subgroups of finite matrix and permutation groups has been
undertaken to reduce time taken and increase the range of group sizes the algorithms will work on.

10.2 Classical Groups

New Features:

– Fast computation of the conjugacy classes in finite unitary groups is now provided. The Classes

(equivalently ConjugacyClasses) function uses the fast methods whenever Magma detects that the
group in question is a standard classical group of one of the following types:-

– Groups containing the special linear group;

– Subgroups of the conformal symplectic group that contain the symplectic group in odd char-
acteristic;

– The conformal unitary group;

– Subgroups of the general unitary group that contain the special unitary group;

– The general orthogonal groups in odd characteristic;

– The conformal orthogonal groups in odd characteristic.

– The class invariants and representative matrices are available via functions of the form
ConjugacyInvariantX, RepresentativeMatrixX and so on, where X is the name of the group. For
example, functions installed to support the unitary groups include:

– ConjugacyInvariantGU(g), where g is a unitary matrix;

– RepresentativeMatrixGU(inv), where inv is a unitary invariant;

– ClassInvariantsGU(d, q), where d is the degree and q is the field size;

– In addition there are versions of these functions for the extended special unitary groups; i.e.,
subgroups of the the general unitary group that contain the special unitary group.

10.3 Finitely Presented Groups

New Features:

– The new intrinsic HasPositiveH1Dimension, given a finitely-presented group G and an epimor-
phism from G onto a permutation group, applies the Holt-Plesken criteria in an attempt to prove
that G is infinite.

– The performance of intrinsic IsInfiniteFPGroup which attemps to prove that a given finitely-
presented group is infinite has been improved. Users are reminded that for intrinsics
HasPositiveH1Dimension and IsInfiniteFPGroup, the optional Magma database of rational rep-
resentations should be installed in order to get the best performance.
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– The intrinsic RSym, introduced in V2.23 and which attempts to show that a finitely-presented group
is word-hyperbolic, has been renamed IsHyperbolic. To help overcome the difficulty in using this
intrinsic, the Handbook section describing it has been considerably expanded and now includes
many more examples. Further, an intrinsic RedRelatorsForFreeProduct has been introduced to
help preparing input data for certain cases.

10.4 Matrix Groups

10.5 Matrix Groups Over Finite Fields

New Features:

– Fast computation of the conjugacy classes in finite unitary groups is now provided. See the section
on Classical Groups for details.

– Major improvements have been achieved in general for the CompositionTree and large matrix groups
(LMG) code.

– The computation of orbits has been sped up for matrix groups defined over GF(2).

– The time taken to determine the default choice of base points for the Random-Schreier algorithm
has been significantly improved.

– The radical quotient algorithm for BSGS matrix groups, fundamental to many structural compu-
tations has been revised to work with all BSGS.

– A number of specialised algorithms for unipotent matrix group structure have been implemented.

10.6 Permutation Groups

Bug Fixes:

– The quo constructor now always automatically performs DegreeReduction on the resulting permu-
tation group. Previously it did not do so if you also asked for the quotient map (this discrepancy
was noted by F. Calegari).
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11 Lattices and Quadratic Forms

11.1 Lattices

Changes and Removals:

– The MinkowskiGramReduction intrinsic has been internally changed to compute successive minima
via LLL and HKZ rather than call SuccessiveMinima. (V2.23-7)

Bug Fixes:

– The third returned value of LLLGram was essentially random in the indefinite case, not the rank as
specified. (V2.23-3)

– The crash involving BKZ intrinsic over the rational field has been fixed. (V2.23-5)

– Some difficulties with spinor genera have been fixed by M. Kirschmer. The problems arise from
differences between the notion of Cassels (thus Conway-Sloane) of “spinor genus”, which is more
often called the proper spinor genus. The SpinorGenerators intrinsic now has a Proper vararg
(by default true) to help with issue. (V2.23-8)

– The Genus intrinsic now properly considers denominators.(V2.23-8)

– A crash with insufficient precision in large dimensional real lattices has been changed to give an
error message. (V2.23-9)

12 Linear Algebra and Module Theory

12.1 Linear Algebra Over Finite Fields

New Features:

– The base algorithm for matrix multiplication in moderately small dimension has been greatly im-
proved for matrices over GF(q) for q = 2, 3, 4, 5, 7. For example, matrix inversion over GF(2) in
dimension up to 128 is roughly 3 to 4 times faster on a typical Intel Core CPU.

– The base algorithm for matrix echelonisation has been greatly improved in general for matrices of
small to medium size with entries in GF(q) for q = 2, 3, 4, 5, 7. For example, matrix inversion over
GF(2) in dimension up to 1000 is roughly 3 to 4 times faster on a typical Intel Core CPU.

– Matrix multiplication over GF(p) for p = 3, 5, 7 has been significantly improved (for all matrix sizes)
in the AVX version.

12.2 Linear Algebra Over General Rings

New Features:

– The recursive echelon algorithm has been improved in the case that a transformation matrix is
required. This also yields improvements to many algorithms which depend on this, including the
computation of the inverse of a matrix.
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– The Hermite normal form algorithm for matrices over the integer ring has been improved for some
types of matrix where there are many non-trivial repeated elementary divisors.

– New interpolation-based algorithms have been implemented for computing the determinant and
characteristic or minimal polynomial of matrices over a ring R, where R is a integer or polynomial
residue ring, or a polynomial ring over such a ring. These are much faster than the previous generic
algorithms when applied to matrices of non-trivial sizes.

– The worst-case exponential-time algorithm for computing the characteristic polynomial of a matrix
defined over a general commutative ring has been replaced with the Berkowitz algorithm, which
takes O(n4) ring operations for an n × n matrix. In particular, this speeds up the computation of
the characteristic polynomial of a matrix defined over a ring with zero divisors.

– A new generic polynomial-time determinant algorithm has been implemented, based on the Berkowitz
algorithm above. This algorithm is applicable to rings with zero divisors for which there is no stan-
dard Gaussian elimination-based algorithm available, and is much faster in higher dimensions than
the generic exponential algorithm which was previously used.

– New functions RowWeights and ColumnWeights have been provided for dense matrices.

13 Linear Associative Algebras

13.1 Associative Algebras

New Features:

– A problem with subspaces of empty vector spaces has been fixed. (V2.23-6)

Bug Fixes:

– Constructing sets from orders of algebras has been fixed. (V2.23-6)
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14 Representation Theory

14.1 K[G]-Modules

New Features:

– The Brooksbank-Luks algorithms for testing modules for isomorphism has been installed. There
are three new intrinsics:

– SummandIsomorphism(M,N) determines the unique maximal isomorphic summands of A-
modules M and N ;

– RelativeDecomposition(M,T ) computes the direct sum decomposition of A-module M into
N + K, where K is minimal with respect to containing the A-module T ;

– SocleRecursive(M) finds the socle of the A-module M .

– A new intrinsic InjectiveHull which computes the injective hull of a KG-module over a finite
field has been installed. This was suggested by Dave Benson and implemented by Derek Holt.

– Intrinsics Vertex and Source compute a vertex and source (respectively) for a KG-module M ,
where K a finite field. Source also returns the Green correspondent of M . The algorithms used
are based on the work of Danz, Kulshammer and Zimmermann.

– Given a KG-module M (usually a projective indecomposable module), the new intrinsic
SocleLayerFactors determines the composition factors of the socle layers. Here a layer is the
quotient of two adjacent terms of the socle series of M . A second intrinsic, DisplaySocleStructure,
takes the output of SocleLayerFactors and displays it in “Christmas tree” style. At present the
computation of the socle series employs a naive algorithm but this will be replaced shortly by one
that uses condensation.

– The new intrinsic PIMBlocks partitions the projective indecomposable KG-modules for the group
G and finite field K into blocks. There are two versions of PIMBlocks, distinguished by argument
types. The first version works off the Cartan matrix which if available is very fast. The second
version has as arguments the lists of irreducibles and PIMs and computes the constituents of each
PIM. Consequentally, as the dimension of the PIMs increases, this can be very time consuming.

Changes:

– A hang in the intrinsic IsIsomorphic for A-modules over finite fields has been fixed. At the same
time, the algorithm has been sped up in the case of difficult isomorphism computations for reducible
A-modules through use of the Brooksbank-Luks algorithm listed above.

14.2 Basic Algebras

New Features:

– The function CompactProjectiveResolutionPGroup has been improved, resulting in a great speedup
for some types of basic algebra.
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15 System

15.1 Magma Startup

New Features:

– The startup time for Magma has been greatly reduced; it is now typically only 0.02 seconds on
a standard Linux installation. This allows many very short successive Magma jobs (called from
perl/shell scripts, etc.) to be run much more efficiently.
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