Summary of New Features in Magma V2.15

December 2008

1 Introduction

This document provides a terse summary of the new features installed in Magma for release
version V2.15 (December 2008).

Previous releases of Magma were: V2.14 (October 2007), V2.13 (July 2006), V2.12 (June
2005), V2.11 (May 2004), V2.10 (April 2003), V2.9 (May 2002), V2.8 (July 2001), V2.7
(June 2000), V2.6 (November 1999), V2.5 (July 1999), V2.4 (December 1998), V2.3 (Jan-
uary 1998), V2.2 (April 1997), V2.1 (October 1996), V2.01 (June 1996) and V1.3 (March
1996).

2 Summary

Lattices and Quadratic Forms

e Lattices

— The enumeration algorithm underlying functions relying on properties of short
lattice vectors has been rewritten. The new code is more efficient. Moreover,
although it relies on double precision computations as before, the result is now
provably guaranteed.

— A new implementation is provided for minimum, kissing number, theta series
and shortest or short vectors. By default, the results returned by the new
versions are now guaranteed. Depending on the inputs, the CPU time is either
similar or dramatically better than the previous code.

— Functions are provided to estimate the run-times of the calculation of minimum,
kissing number, theta series and shortest or short vectors.

— (March, 2009) The code for computing the automorphism group of a lattice has
been replaced. The new implementation includes some important improvements
over the old algorithm. These include the exploitation of stronger invariants and
the use of partition refinement in the backtrack search. The new version is able
to construct automorphism groups for lattices that were previously well beyond
the old program and it also significantly speeds up many examples that were
hard for the old algorithm. The same improvements flow through to isometry
testing.

Global Arithmetic Fields
e Number Fields

— In the case of Kummer extensions a new special-purpose algorithm that is much
faster than the general algorithm is now used to compute maximal orders.

Galois Theory
— The Fieker-Kliiners algorithm for constructing Galois groups has been imple-
mented for irreducible polynomials over Q(t).

— It is now possible to compute the Galois group of a general polynomial over Z
or (). That is, the polynomial need not be irreducible.

Class Field Theory

— A new algorithm has been implemented for the computation of maximal orders
in abelian extensions.

Algebraic Function Fields
— In the case of Kummer extensions a new special-purpose algorithm that is much
faster than the general algorithm is now used to compute maximal orders.

— Completion of function fields and their orders at places of degree greater than
1 has been rewritten and extended to fields of characteristic zero.

Artin Representations

— A package for Artin representations (complex representations of the Galois
groups of finite extensions of Q) has been developed by Tim Dokchitser. This is
primarily designed for computing the character values efficiently for use in the
associated L-series.

Local Arithmetic Fields

e (General Local Fields

— A new class of local field is now supported: a local field defined by the extension
of any local field by an arbitrary irreducible polynomial. These local fields are
referred to as general local fields.

— An isomorphism between a general local field and a local field constructed as an
extension by an inertial polynomial followed by an extension by an eisenstein
polynomial can be constructed.

— Subfields and homomorphisms are supported for general local fields.

— Some support for calculation with automorphisms and Galois groups is provided.

Group Theory

e Finite Groups

— The strategy used when computing all conjugacy classes of subgroups has been
extensively reworked to avoid inefficiencies in the case of larger groups. An
example of such a group is the wreath product of PT'L(2,16) with Cy where the
execution time was reduced from 150,000 seconds to 860 seconds.

— The functions for computing conjugacy classes of subgroups now apply to any
matrix group for which Magma can compute the soluble radical and correspond-
ing quotient. This includes finite matrix groups over GF(q), Z, Q, and Z/nZ.

— When testing whether a subgroup of a permutation group is maximal, the algo-
rithm will now exploit our ability to construct the maximal subgroups of larger
groups. This allows the testing for maximality of subgroups having much larger
index and also speeds up the test in the case of subgroups of moderate index.

e Abelian Groups

— The automorphism group of a finitely-generated abelian group may now be
constructed using code developed by Derek Holt.

e Finitely-Presented Groups

— The automorphism group of a free group can now be constructed (implemented
by Derek Holt).

— Derek Holt has implemented a version of his group homomorphism algorithm
which searches for homomorphisms from a finitely-presented group into a (small)
soluble group given by a power-commutator presentation (pc-group).

e Group Cohomology

— Derek Holt has extended his group cohomology package to include the compu-
tation of the first cohomology group for an infinite finitely-presented group.

Algebras
e Exterior Algebras (New)

— A type for exterior algebras has been installed. Such an algebra is skew-
commutative and its elements have a very efficient representation, resulting
in fast Grobner basis and module theory computations over such algebras.

Commutative Algebra

e Grobner Bases

— The computation of primary decomposition and the radical has been greatly
improved.

— A new boolean polynomial ring type is supported.

— The operations for accessing and specifying monomial orders have been ex-
panded.

e Jdeals and Modules

— A major expansion of the facilities for modules has been undertaken. A variety
of base rings is now available, including localizations of multivariate polynomial
rings. A new module homomorphism type is fully supported, gradings are now
fully handled in all functions, and the computation of free resolutions has been
greatly improved.

— A function has been added to compute the dimensions of cohomology groups of
the coherent sheaf represented by a graded module or its twists.

e [nvariant Theory

— Some speedups have been achieved for computing primary and secondary in-
variants in certain cases.

— The fast algorithm of Simon King for fundamental invariants has been imple-
mented.

Algebraic Geometry

e (General Schemes

— A function to compute the dimension of coherent sheaf cohomology on ordinary
projective schemes has been added. This works with sheaves represented by
graded modules.

— A large package for hypersurfaces in 3-dimensional projective space has been
provided by Josef Schico and Tobias Beck. Features include formal desingular-
isation leading to the computation of birational invariants of any non-singular
birational model of the surface. These invariants include the arithmetic genus,
the geometric genus and any higher plurigenera. Parametrisation routines are
provided for line and conic bundles and Del Pezzo surfaces of degree 5 and
7. These enable the user to determine if a surface is rational or birationally
ruled. If rational, then a parametrisation over the basefield can be calculated if
it exists.

Arithmetic Geometry
e Conics

— Solution and parametrization of conics over number fields is now available, using
a new implementation of solution of diagonal conics (based on a variant of
Lagrange’s method) that is faster and also more effective than the previous
implementation. Care is taken to avoid unnecessarily factorizing large integers
as a result of diagonalizing.

e Elliptic Curves over Finite Fields
— Point-counting over prime finite fields smaller than 22 has been sped up by a
factor of about two on many computers.
— p-adic deformation methods for fast point-counting have been added for small
characteristics greater than about 40.

e Elliptic Curves over the Rationals

— A new fast implementation of 2-descent is included, which avoids much of the
general machinery. The new function has been tested on the Cremona database
(via the Parity conjecture) and other curves.

— An efficient new implementation of the Cassels-Tate pairing between 2-coverings
is provided. The algorithm, due to Donnelly, is much cleaner than the version
previously implemented.

— The Cassels-Tate pairing between a 4-covering and a 2-covering is implemented,
using a new algorithm due to Donnelly.

Elliptic Curves over Number Fields

— The Cassels-Tate pairing between 2-coverings is implemented.

Elliptic Curves over Rational Function Fields

— The TwoDescent routine is now much more efficient.

— The Cassels-Tate pairing between 2-coverings is implemented.

Models of Genus One Curves

— New routines for minimisation and reduction of genus one curves of degrees
2,3,4 and 5 are included. This code was written by Tom Fisher, using new
algorithms for some of cases due to Cremona, Fisher and Stoll.

Hyperelliptic Curves over Finite Fields

— A number of functions written by R. Lercier and C. Ritzenthaler and based on a
new set of absolute invariants have been added for genus 2 curves. These allow
more general computation of twists and geometric automorphism groups, which
works in all characteristics. Most of the functions also work over the rationals.

e Hyperelliptic Curves over the Rationals

— For genus 2 curves, a new implementation of Chabauty’s method combined
with the “Mordell-Weil” sieve is provided. This determines precisely the set
of rational points on the curve. It works by combining information from local
calculations at many different primes with knowledge of the Mordell-Weil group.
This was developed by Michael Stoll.

e [.-series

— The L-series attached to an Artin representation can now be created and effi-
ciently computed. More generally, the twist of an arbitrary L-series by an Artin
representation can be constructed. This functionality was developed by Tim
Dokchitser.

Modular Arithmetic Geometry

e Hilbert Modular Forms

— A substantial package for computing Hilbert modular forms is now available.
This is the first released version, and will continue to be developed in subsequent
releases. The current functionality concentrates on computing Hecke operators
on spaces of cusp forms and new forms. The package handles arbitrary totally
real fields, and computes spaces of forms on I'g(N) for any ideal N of the ring
of integers, for any weight whose components are all at least 2.

The algorithms make use of the Jacquet-Langlands correspondence, and work
by computing the Hecke action on a space of automorphic forms on some order
in a suitable quaternion algebra. Two separate, complementary algorithms are
implemented: the main one, due to Dembele, uses definite quaternion algebras
and is essentially an efficient reformulation of the Brandt module approach. The
other algorithm, currently only implemented for weight 2, uses Fuchsian groups
arising from units in indefinite quaternion algebras, and is an application of
Voight’s algorithm for computing fundamental domains of these groups.

Many of the key steps in the first algorithm are already highly optimized. A very
substantial range of fields can be handled, for instance the program has been
used to compute elliptic newforms over a degree 8 field, and Hecke operators
can often be computed even when the dimension of the space is large.

Coding Theory

e Linear Codes over Fields

— An [n, k| linear code C' is said to be a best known linear [n, k] code (BKLC)
if C' has the highest minimum weight among all known [n, k] linear codes. A
number of new codes have been added to the BKLC database constructed and
maintained by Markus Grassl. Specifically, 17 codes over GF(3), 15 codes over
GF(4), and 5 codes over GF(7) have been added.

e Quantum Codes

— An [[n, k]] quantum stabiliser code @ is said to be a best known [[n, k]] quan-
tum code (BKQC) if @ has the highest minimum weight among all known [[n, k]|
quantum codes. The BKQC database constructed and maintained by Markus
Grassl has been expanded as follows: The maximal length of codes has been
increased from 35 to 50 while the minimum distance of 10 codes has been im-
proved.

3 Documentation

New chapters in the Handbook for V2.15 are:

General Local Fields

Local Polynomial Rings

Artin Representations

Hilbert Modular Forms

— Algebraic Power Series

— Algebraic Surfaces

4 Language and System Features

Changes:

— The error statement now prints Runtime error: before the given arguments.

New Features:

— The mechanism for attaching and managing package signature files has been sped up. Consequently,
the time for starting up Magma (which attaches all the standard system package files) is rather faster
than for previous versions.

— A larger number of internal memory blocks is now allowed in the system on 64-bit machines. This
fixes some problems with some objects like very high degree polynomials with large integers as
coefficients.

5 Aggregates

5.1 Sequences

New Features:

— One may now use " m in sequence constructions for m consecutive copies of x.

5.2 Multisets

New Features:

— Arbitrarily large integers are now allowed for multiplicities of elements in multisets.

— Multisets are now printed in sorted order when possible (including nested multisets) which makes
it much easier to examine multisets visually.

6 Basic Rings
6.1 Integer Ring

New Features:

— New functions ShiftLeft, ShiftRight, ModByPower0£f2 for fast bit operations on integers.

6.2 Multivariate Polynomial Rings

New Features:

— New function Polynomial (C, M) to create a multivariate polynomial from parallel sequences C' and
M of coefficients and monomials, respectively (thus matching Coefficients and Monomials).

— New function CoefficientsAndMonomials(f) to return the coefficients and monomials of f as
parallel sequences.

— New function Degree as synonym for WeightedDegree (which respects the grading).

— Powering of a polynomial now uses the Frobenius map in characteristic p when applicable.

6.3 Finite Fields

New Features:

— Computing roots of a polynomial over a finite field has been greatly sped up in the case that the
degree of the polynomial is large and the field is small.

7 Linear Algebra and Module Theory
7.1 DMatrices

New Features:

— Some fundamental matrix algorithms have been greatly sped up for matrices over GF(2)[z] and

GF(2)(1).

— A fast modular algorithm for matrix multiplication over K[z] and K[z]/(f(x)) for K a small finite
field has been implemented. Several algorithms based on multiplication have been similarly sped

up.

— One may now compute the rank of a matrix over a ring for which a field of fractions is defined. This
includes most domains which are not fields or Euclidean.

7.2 Modules over Dedekind domains

Changes:

— Module printing has been economised and maps are returned from creation functions only when
requested.

New Features:

— Given two pseudo matrices their intersection can be computed using meet.

10

8

8.1

Lattices and Quadratic Forms

Minima and Vector Enumeration

Changes:

The enumeration algorithm underlying many tasks related to the study of short lattice vectors has
been rewritten. The new code is more efficient. Moreover, although it relies on double precision
computations like the previous implementation, the result is provably guaranteed.

The functions Minimum, KissingNumber, ShortVectors, ShortVectorsMatrix, ShortestVectors,
ShortestVectorsMatrix, and ThetaSeries have been rewritten. By default, the results returned
by the new versions are now guaranteed to be correct. Depending on the inputs, the execution time
is similar to or dramatically better than previously.

New features:

A new Proof option has been added for the functions Minimum, CentreDensity, CenterDensity,
KissingNumber, ShortVectors, ShortVectorsMatrix, ShortestVectors, ShortestVectorsMatrix
and ThetaSeries. It allows the user to disable the correctness guarantee: in most cases the code
is unlikely to run significantly faster, but there could be inputs for which the provable variant fails
because it deems impossible to provide correctness guarantees.

A new SetVerbose(“Enum”, b) flag allows the user to obtain information during the execution of
the enumeration algorithm.

The function EnumerationCost provides a priori estimates of the run-times of the executions of
the functions listed in the first item. More precisely, EnumerationCost(L,u) provides a heuristic
evaluation of the size of the tree to be visited during the enumeration of vectors within the prescribed
norm u. If u is not given, an upper bound to the lattice minimum is computed.

Bug Fixes:

8.2

Two inconsistencies in the lattice database have been corrected. For lattice "Q32"” the stored
automorphism group has been corrected and it now has order equal to the group order stored in
the database. For lattice "LAMBDA(G1)” the stored group order is corrected to be the order of
the stored group. In both cases the automorphism group of the lattice has been recomputed and
checked to be equal to the stored group.

Attributes of Lattices

New Features:

A lattice attribute L‘MinimumBound allows the user to give an upper bound on the minimum of the
lattice L.

11

9

9.1

Global Arithmetic Fields

Algebraic Number Fields

Changes:

PowerProduct for sequences of number field elements has been added with functionality the same as
that of ProductRepresentation. Both have been improved for elements represented in a maximal
order of an absolute extension.

New Features:

A new algorithm for p-maximal orders of Kummer extensions based on Stichtenoth. This has in
most cases sped up both p-maximal and maximal order computations in Kummer extensions.

The intersection of two orders of a number field sharing the same equation order can be computed
using the intrinsic meet.

InfinitePlaces are now accessible from an order as well as a field.
The CoefficientIdeals of an order or an ideal can now be retrieved.

The Codifferent of an ideal can be calculated.

Bug Fixes:

9.2

A bug has been fixed in residue field computations which fixed a problem which was seen in prime
splitting.

A restrictive check on the input orders to subset has been removed so that subset can be used on
orders which are not identical.

Algebraic Function Fields

Removals and Changes:

Completion of a global function field or an order thereof at a place of degree greater than 1 has
been reimplemented.

ResidueClassField of a place now returns the map from the order of the place into the field same
as ResidueClassField(Ideal).

Determining second generators of prime ideals creating during prime splitting has been improved.

More storing of prime splitting has been implemented to avoid splittings being calculated twice in
a row.

CommonZeros has been reimplemented.

It is now possible to coerce between a field and its subfields.

New Features:

Function fields and their orders with constant field having characteristic zero can now be completed
at places of degree greater than 1. This functionality is also accessible via the intrinsic Expand.

12

— Intersections of orders of function fields sharing the same equation order can now be gained using
the operation meet.

— PowerProduct for sequences of function field elements has been added with functionality the same
as that of ProductRepresentation.

— The CoefficientIdeals of an order or an ideal can now be retrieved.
— Inclusion of an order in another order can be tested using subset.

— The Codifferent of an ideal can be calculated.

Bug Fixes:

— A bug has been fixed in residue field computations which fixed a problem which was seen in prime
splitting.

— Some bugs in elements in product representation have been fixed, in taking norms and mapping to
the residue field.

9.3 Abelian Extensions

New Features:

— A new algorithm for computing maximal orders in abelian extensions has been completed. It is
available through the parameter A1 := "Kummer" but is used by default. The algorithm computes
maximal orders of kummer extensions (using the new implementation for number fields) known to
the abelian extension then combines these with the components of the extension to gain a maximal
order faster than by using the Round2 algorithm. The "Round2" and "Discriminant" algorithms
are still available as options to the "A1" parameter.

9.4 Artin Representations

Features:

— This new package handles complex representations on the Galois groups of finite extensions of Q.
A new type ArtRep has been introduced for these objects.

— For a finite extension K/Q, ArtinRepresentations(K) returns the irreducible Artin representa-
tions of K.

— Key invariants, such as the Conductor and other ramification data, can be computed.

— The character of the representation may be obtained as an element of the character group of the
finite Galois group. This means that the Magma functionality for finite group characters may be
used.

— The direct sum and the tensor product of two Artin representation can be constructed.

13

10 Local Arithmetic Fields

10.1 Local Fields

Bug Fixes:

— Added IsWildlyRamified which had been wrongly named IsTamelyRamified.

— Calculation of multiplicities of roots of polynomials over local fields has been fixed.

10.2 Local Fields defined by Arbitrary Polynomials (New)

The local fields which have been previously available in Magma have had the restriction that
they must be constructed by taking extensions using only inertial or eisenstein polynomials.
These new local fields can be defined using extensions by any irreducible polynomial.

New Features:

— The isomorphism between one of these local fields and a local field constructed by extensions by
inertial and eisenstein polynomials only is accessed through RamifiedRepresentation.

— A QuotientRepresentation of the field as a quotient of a polynomial ring by the defining polyno-
mial is available.

— The BaseRing and DefiningPolynomial of a field can be retrieved as can its Degree, InertiaDegree
and RamificationDegree. Local fields also have an accessible Precision and retrievable Prime.

— Subfields of these local fields can be constructed using <sub | >.

— The Discriminant of a local field can be calculated and its ResidueClassField constructed.
— Various ramification properties of a field can be tested.

— These local fields have elements on which one can use basic arithmetic and predicates.

— An IntegralBasis can be calculated and elements tested for being integral.

— An InertialElement and a UniformizingElement are available.

— Homomorphisms from these local fields can be defined and applied to the elements.

— Valuation, RepresentationMatrix and Eltseq of a local field element can all be calculated.

— The AutomorphismGroup of a field can be calculated as can Decomposition, Ramification and
InertiaGroups. A FixedField of any one of these groups is also available.

— Factorization of polynomials over these local fields is available.

10.3 Algebraic Power Series

New Features:

— This is a new type (RngPowAlgElt) for working by lazy evaluation with multivariate power series
over a field which are roots of an polynomial equation. The package was designed and implemented
by Tdbias Beck.

14

A Dbasic series is defined as the root of a univariate polynomial with coefficients in a multivariate
polynomial ring (the approximation domain) with a specified initial expansion. The series must be
expandable in e-th roots of the variables, for some e > 1, and the finite expansions of the series to
a given degree are as elements of the approximation domain with variables then representing their
e-th roots. e is part of the series data.

— It is possible to specify a set of algebraic power series which are substituted into the coefficient
variables of the given defining polynomial to give the actual defining polynomial. In this way,
elements in composite algebraic extensions can be defined recursively.

— There is a second variant, which allows a composite algebraic series to be defined by substituting a
sequence of such series into the variables of another one.

— All series are “lazy”. At any time, they store an expansion to a certain degree and the main
function Expand computes the expansion to a specified higher degree as required. For series with
substitutions, the expansions are carried out recursively.

— There are also functions for testing for (exact) equality of algebraic power series and testing finiteness
(is the series actually a multivariate polynomial?).

— There is a function SimplifyRep to express any series as a simple series with an irreducible defining
polynomial with polynomial coefficients and no substitutions.

— There are functions for basic arithmetic (addition, multiplication etc.) on series.

— Amongst various constructors, RationalPuiseux returns all roots of a quasi-ordinary univariate
polynomial over a multivariate polynomial ring. For such a defining polynomial, all roots are
expandable in power series in e-th roots of the variables for some e with a possible algebraic extension
of the basefield. Basefield extensions are worked out by the function.

10.4 Newton Polygons

Bug Fixes:

— Given a face of a newton polygon defined by a * z + b *y + ¢ = 0 a fix has been made to avoid
problems when a, b or ¢ are large.

15

11 Groups

11.1 Finitely Presented Groups

New Features:

— The automorphism group of a free group may be constructed using code developed by Derek Holt.

— Homomorphisms of a finitely-presented group onto a (small) finite polycyclic group may be found
using the intrinsic Homomorphism. The code was provided by Derek Holt.

Bug Fixes:
— A bug when rewriting an element of a group as an element of a subgroup has been fixed.
— A bug to do with the Todd-Coxeter algorithm and involution generators of the group has been fixed.
— A bug to do with using the Todd-Coxeter algorithm with the trivial subgroup has been fixed.
— A bug where Simplify may have substituted protected generators has been fixed.

11.2 Finite Groups

Changes:

— The values returned by AbelianInvariants and PrimaryAbelianInvariants have been standard-
ised across the four types of groups GrpAb, GrpMat, GrpPerm, GrpPC. The functions AbelianBasis
and PrimaryAbelianBasis have been altered to match the output of the corresponding Invariants
functions.

New Features:

— The algorithm used by the Subgroups family of functions to expand maximal subgroups of a group
to all subgroups has been revised. There are two main changes. When a subgroup needing expansion
is encountered where either the subgroup has a large elementary abelian chief factor or the expansion
algorithm would previously have been called recursively, only maximal subgroups of the subgroup
are computed, and are treated the same way as maximal subgroups of the original group needing
expansion. The other change is in the handling of p-subgroups, where, as far as is convenient, one
subgroup is chosen for each prime p, and the expansion of this subgroup gives all p-subgroups of
the group. Any p-subgroups from other expansions are ignored.

These changes eliminate much conjugacy testing of subgroups, and also allow the construction of
all subgroups of groups with larger elementary abelian chief factors than was previously possible.

— The arbitrary limit on the size of input group to the FPGroup function has been removed. The order
limit is now the limit on the degree of a permutation group, 23° — 1.

Bug Fixes:

— Some instances of taking an extremely long time to compute a presentation of a subgroup when
using the Subgroups algorithm have been fixed.

— The maximal subgroups of PSp(4,4) : 4 have been corrected.

— A bug when computing elementary abelian subgroups has been fixed.

16

11.3 Permutation Groups

Changes:

— The CompositionSeries function for permutation groups now gives a full composition series for
the group, not merely a series for the abelian quotient.

New Features:

— The default algorithm for computing the regular representation of a group has been changed to the
”Wang” algorithm. This is faster than the ” Canonical” algorithm, and is the first step in a call to
the FPGroup function, for instance.

— The use of STCS applied to a regular group has been improved to avoid any computation of elements
in the (trivial) point stabilizer. This is aimed at speeding the FPGroup function in particular.

— When defining homomorphisms with domain a permutation group, they may be defined using images
of any generating set.

— The textttIsMaximal(G,H) function call now computes the maximal subgroups of G and checks H
against the list found.

Bug Fixes:

— Return FewGenerators as a sequence as documented rather than a set.

— A bug in the code for computing normal structure of a permutation group has been fixed. This
bug caused crashes when it turned up, rather than incorrect answers, and needed quite exotic
combinations of circumstances to occur, but was responsible for several reported crashes.

— The default maximum number of random elements tried when applying RandomSchreier to a low
degree group has been increased to make getting the full group more likely.

— The default subgroup centralizer algorithm now checks to see if using the Centralizer0fNormalSubgroup
method is possible, and uses this if it is.

— A bug when constructing a homomorphism with permutation group domain has been fixed.

11.4 Matrix Groups Over General Rings

Changes:

— The meaning of the CommutatorSubgroup command for matrix groups has been changed to agree
with other group types. The call CommutatorSubgroup(G,H,K) now returns [H, K| as a subgroup
of G, rather than the normal closure [H, K]%, as it used to.

New Features:

— The Subgroups family of functions now applies to any matrix group where Magma can compute
the soluble radical and corresponding quotient of the group. This includes finite matrix groups over
finite fields, the integers, the rationals and integers modulo n.

— The algorithm used to compute the order of a matrix over the integers has been improved and is
much quicker for matrices of large, but finite, order. This affects matrix groups over the integers,
the rationals, and number fields.

17

Bug Fixes:

— A bug in testing matrix groups over number fields for finiteness has been fixed. The previous
algorithm could say that the group was finite when it was not. This has been corrected, and the
algorithm improved for speed.

— Very slow membership tests in sets of matrix group elements have been addressed and improved.

— When forming a conjugate of a group, the group is no longer tested for finiteness.

11.5 Matrix Groups over Finite Fields

New Features:

— In matrix groups over finite fields which contain the special linear group, conjugacy classes are now
computed by enumerating class invariants. This is much faster than the previous method, and
works for much larger degrees and field sizes.

Bug Fixes:

— A bug in testing membership of orthogonal groups in characteristic 2 has been fixed. The previous
code could say that a matrix was in the group when it preserved the bilinear form, but not the
quadratic form.

— A bug in memory management associated with the use of the IsAbsolutelyIrreducible function
has been fixed. The bug involved the second return value appearing to be assigned even when the
result was true.

— Generators for OmegaPlus(4,q) have been corrected.

11.6 Almost Simple Groups

New Features:

— Functions have been installed for creating the conformal orthogonal, symplectic and unitary groups.
The functions are ConformalOrthogonalGroup, ConformalOrthogonalGroupMinus,
ConformalOrthogonalGroupPlus, ConformalSymplecticGroup, and ConformalUnitaryGroup.

— A more efficient version of the spinor norm algorithm has been implemented, which works for
elements of the full orthogonal group (rather than just the special orthogonal group).

Bug Fixes:

— The code for determining whether a matrix group defined over a finite field fixes a quadratic form
now works in the case in which the field is defined as an extension of a subfield.

18

11.7 Finite Soluble Groups

Changes:

— As part of improvements to CompactPresentation and the reconstruction function PCGroup, there
has been a small change to the compact presentation produced. Note that old-style compact pre-
sentations are still valid input to the reconstruction function, will continue to be valid indefinitely,
and still give the same presentation.

New Features:

— A new algorithm has been installed to compute the Agemo function on a p-group. This function
does not compute the conjugacy classes of the group as the old algorithm did, so is applicable to
larger groups. This has also improved computation of JenningsSeries.

— The algorithm for reconstructing a group stored as a compact presentation has been improved to
reduce the time of this operation for large groups. As part of this improvement there has been a
small change to the compact presentations.

Bug Fixes:

Various bugs to do with the trivial group, particularly with centralizers and p-quotients, have been
fixed. The bug with centralizers caused certain character theory calculations in soluble groups to
go awry.

— Inclusion and projection maps for direct products of a sequence of groups have been fixed.

A number of operations with group elements were unnecessarily slow and have been improved.

A bug when computing the normal closure of a group in itself has been fixed.

11.8 Databases of Groups

Bug Fixes:

— Problems that occurred when the Rational and Quaternionic matrix groups databases were open
simultaneously have been fixed.

11.9 Straight Line Program Groups

New Features:
— When defining a homomorphism with domain an SLP-group, it is now possible to use the generator
image pairs notation x -> y.
Bug Fixes:

— Some bugs with Evaluate when the word group and the target group are equal have been fixed.

— Giving Evaluate an empty list as first argument no longer crashes.

19

12 Algebras

12.1 Associative Algebras

Bug Fixes:

— RepresentationMatrix of an element has been rewritten to allow for proper selection of right or
left multiplication.

12.2 Exterior Algebras (New)

A new type for exterior algebras is now supplied (created with the function ExteriorAlgebra).
Such an algebra is skew-commutative and is a quotient of the free algebra K(z1,...,z,)
by the relations 27 = 0 and z;2; = —x;2; for 1 <i,j <n, i # j.

Because of these relations, elements of the algebra can be written in terms of commuta-
tive monomials in the variables (via a collection algorithm), and the associated algorithms
are much more efficient than for the general noncommutative case. Grobner bases of ideals
can be computed very efficiently (the Faugere Fy algorithm has been specially adapted for
this). Furthermore, the extensive module theory also works over exterior algebras.

12.3 Basic Algebras

New Features:

— Functions for computing the Ext algebra of a basic algebra have been added. This includes functions
to compute the basic algebra of the Ext algebra.

— There are now several function that create basic algebras of special interest. Included in these are
the basic algebras of group algebras, Schur algebras and Hecke algebras over finite fields, as well as
split basic algebras of matrix algebras and endomorphism algebras.

12.4 Characters of Finite Groups

New Features:

— The computation of conjugacy class fusion in elementary subgroups of a group has been improved.
This is a fundamental operation in Unger’s algorithms for the character table and for computing
Schur indices.

Bug Fixes:

— The intrinsic function CharacterTable now applies to finite groups of type GrpAb.

— A serious memory problem when computing the characters of an abelian group has also been fixed.

20

13 Lie Theory

13.1 Coxeter Groups as FP Groups

Changes:

— BruhatDescendents has been renamed to BruhatDescendants.

21

14 Commutative Algebra

14.1 Ideal Theory and Grobner Bases

Changes:

— The function PolynomialRing(R, W), where W is a sequence of weights, now uses the weighted
grevlex (grevlexw) order with W as the main order for the ring.

— The function Homogenization now uses the grading to determine the homogenization.

New Features:

— Monomial orders can now be described by tuples. The functions PolynomialRing(R, n, T),
PolynomialRing(R, W, T) and ChangeOrder(I, T) may now take a tuple T for the order. Con-
versely, the new function MonomialOrder returns a tuple describing the monomial order of a ring or
ideal. A new function MonomialOrderWeightVectors also returns the weight vectors corresponding
to the monomial order.

— A new boolean polynomial ring type (created by BooleanPolynomialRing) has been introduced
to provide efficient Grébner basis computations with ideals in polynomial rings over GF(2). The
effect of computing with an ideal in this ring is the automatic inclusion of the field polynomials
x? 4+ z;. This saves time and memory because a compact bit vector representation is available for
the monomials and conversion to and from this is not needed. The lex, glex and grevlex monomial
orders are supported. Large boolean polynomials are easily created using the BooleanPolynomial
function.

— Computing the minimal basis of an ideal has been greatly improved in both speed and memory
usage by a new algorithm based directly on the Fj algorithm (instead of the former algorithm
which was based on linear algebra).

— A new Hilbert-driven Buchberger algorithm has been implemented (based on the F, algorithm) and
is dramatically faster for several kinds of input. This speeds up the function HilbertGroebnerBasis
and the computation of primary invariants for invariant rings.

— The algorithms for the computation of the radical or primary decomposition of a positive-dimensional
ideal have been greatly sped up. A new fast test for primality of a positive-dimensional ideal
has also been implemented. Several leaks have also been fixed. Thus the functions Radical,
RadicalDecomposition, PrimaryDecomposition, IsPrime and IsPrimary have all been greatly
improved.

— New function Polynomial(C, M) to construct a polynomial from parallel sequences of coefficients
(C) and monomials (M).

— New function Degree as synonym for WeightedDegree (which respects the grading).
— New function Ideal(f) to create the principal ideal generated by the polynomial f.

— New functions EasyBasis to access the easy ideal basis and SmallBasis to give the shortest length
basis known of an ideal.

— New function QuotientDimension to give the (vector space) dimension of the quotient of a ring by
an ideal.

— New functions MilnorNumber and TjurinaNumber to compute Milnor and Tjurina numbers for
multiplicity information at the origin of multivariate polynomials.

22

New function Saturation to return the saturation of an ideal I by a polynomial f and a minimal
degree polynomial g so that dividing I by g is equivalent to saturation by f.

New function HilbertSeries (I, s) to give the hilbert series to precision s. Related new functions
HilbertNumerator and HilbertDenominator.

Several low-level leaks have been fixed, particularly involving monomial orders.

14.2 Modules over Multivariate Rings

Changes and Removals:

New

The earlier function Module(R, k) (to create a free embedded module) has been renamed to
EModule(R, k). Module has been kept in for now for backwards compatibility but will be removed
in a future release.

The earlier function MinimalFreeResolution will be removed in the future, since FreeResolution
now minimizes by default and one may compute a non-minimal resolution via the new parameter
Minimize.

The column ordering for the TOP monomial order has been reversed to make it consistent with the
POT monomial order.

Features:
Modules and most relevant operations are now supported over 3 commutative multivariate rings:

— Multivariate polynomial rings.
— Localizations of Multivariate polynomial rings.
— Affine Algebras.

Furthermore, modules may now be defined over exterior algebras and most standard operations
(including free resolution computations) are supported for them.

Monomial orders can now be described by tuples. The functions Module(R, n, T) and Module(R,
W, T) may now take a tuple T for the order. Conversely, the new function MonomialOrder returns
a tuple describing the monomial order of a module.

Some new monomial orders have been added (besides the original TOP and POT orders).

The Schreyer monomial order is now used more extensively for many internal computations, espe-
cially for computing syzygy modules and for free resolutions. This has led to general speedups for
many computations with modules.

A module homomorphism type (ModMPolHom) is now fully supported to represent homomorphisms
between modules (and is used for boundary maps of free resolutions, etc.). This allows greater much
power and flexibility than the old use of direct matrices.

Computing the minimal basis of a module has been greatly improved in both speed and memory
usage by a new algorithm based directly on the Fy algorithm (instead of the former algorithm which
was based on linear algebra).

One may now have negative weights in the grading for a module. This is supported properly by all
functions which use the grading (including the computation of Hilbert series).

23

— The computation of free resolutions has been greatly improved in general and associated functions
have been added:

— The terms of a free resolution are now graded properly if the input is graded. The associated
boundary maps are now graded homomorphisms of degree 0.

— The hybrid La Scala/F, algorithm now works over the rational field as well as over any finite
field.

— A new fast method has been implemented for minimizing a resolution coming out of the La
Scala/Fy algorithm.

— One may now select the alternative resolution algorithm with iterated syzygies and minimiza-
tion (which can be faster, particularly in characteristic 0).

— For non-homogeneous modules, an option for computing a resolution of a homogenization
(which is then specialized) is now available.

— One can now efficiently access Betti number information of a module (via new functions
BettiNumbers, BettiNumber, BettiTable and MaximumBettiDegree). If the module is graded,
then this is also faster than computing a full resolution in general (since the minimization is
not needed).

— New function Regularity to compute the Castelnuovo-Mumford regularity of a module.

— The function HilbertSeries now handles graded modules fully and now returns a consistent value
for a module, whether it is represented as an embedded or reduced module (both for sub- and
quotient modules).

— New function HilbertSeries(M, s) to give the Hilbert series as a power series to precision s.
Related new functions HilbertNumerator and HilbertDenominator.

— New functions £*M, Mxf, I*M, M*I for products of modules by ring elements and ideals.

— New functions Rank and IsFree for testing fundamental properties of modules.

— New functions ColonIdeal, ColonModule and Annihilator.

— New functions Grading and Twist for simple operations with gradings of modules.

— New functions FittingIdeal and FittingIdeals for computing Fitting ideals of modules.
— New function DirectSum for computing direct sums.

— The function Hom to compute Hom(M, N) has been improved and now computes a grading on the
result and the associated maps when the inputs are graded.

— New functions Hom(C, N), where C' is a complex, and Ext (i, M, N).
— New function TensorProduct to compute the tensor product of two modules.

— New functions TensorProduct(C, N), where C is a complex, and Tor(i, M, N).

— New function CohomologyDimension to compute the dimension of cohomology groups H" (M (n))
where M is a graded module over k[, ...,] and M is the associated coherent sheaf on P}
n signifies a Serre twist. The algorithm used is that of Decker, Eisenbud, Floystad and Schreyer
based on the BGG correspondence and makes use of the new functionality for modules over exterior
algebras.

24

14.3 Invariant Theory

New Features:

— Computing invariants of given degree has been dramatically sped up when the group is a matrix
group of diagonal matrices.

— The computation of primary invariants has been sped up in general by using the new Fj-based
Hilbert-driven Buchberger algorithm. Extra improvements has also been added in the case that
there are very many invariants of small degree.

— The computation of secondary invariants in the modular case has been sped up because of general
improvements in the computation of syzygy modules.

— The algorithm of Simon King for computing fundamental invariants has been implemented and is
dramatically faster than the previous one in general. Fundamental invariants can now be computed
(each modulo a prime coprime with the group order) for all transitive groups of degree 7 in about
1 second total, and for all transitive groups of degree 8 in about 2 minutes total.

25

15 Algebraic Geometry

15.1 Schemes

Removals and Changes:

— Equality for scheme maps will now expand composite maps (rather than declaring that a composite
and non-composite scheme map are automatically unequal). Also scheme maps without inverses and
isomorphisms are properly checked for equality rather than being declared automatically unequal
as before.

— The command RationalPoints is no longer available as an alias for PointSearch, as this caused
confusion. (The latter is a p-adic search method for rational points on general schemes over Q.)
New Features:

— Function CohomologyDimension has been added to compute the dimensions of cohomology groups
of (twisted) coherent sheaves on ordinary projective schemes represented by graded modules. The
function is further described in the modules over affine algebras section 14.2.

Bug Fixes:

— A problem with maps between schemes defined over p-adic fields has been fixed.

15.2 Algebraic Curves

Changes:

— The function Place has been partly rewritten to speed up the computation of the place for a
non-singular point on the curve defined over the basefield or a finite extension.

— Genus now uses ArithmeticGenus for curves whose projective closure is known to be non-singular.
For affine or ordinary projective curves in small dimensional ambients (2 or 3) or in P* and defined
by < 4 equations, a non-singularity check is carried out if the singularity /non-singularity is unknown.
This is a fairly cheap check that greatly speeds up the genus computation for non-singular curves
over function fields.

Bug Fixes:

— Curve divisors can no longer be multiplied by large integers.

26

15.3 Algebraic Surfaces

New Features:

— A new package by Tébias Beck and Joseph Schicho for working with algebraic hypersurfaces in
3-dimensional projective space has been added. This has three main components: formal desingu-
larisation, computation of m-adjoint linear systems and full classification and parametrisation of
rational hypersurfaces over Q.

— Formal Desingularisation of X (main function ResolveProjectiveSurface) computes the power
series completions of the generic rings of the components of some (not necessarily minimal) birational
desingularisation of X that lie over components of the singular subscheme of X. This is based on
a Jung-Hirzebruch desingularisation of X and the algorithm was designed and implemented by T.
Beck in his PhD. It uses algebraic power series.

— m-adjoint sheaves on X are the pushforwards of tensor powers of the canonical sheaf from a birational
desingularisation of X. The m-adjoint linear systems are the global sections of Serre twists of these
sheaves. They are independent of the desinglarisation and give important birational invariants like
the desingularised arithmetic genus and geometric plurigenera. They also give important maps into
projective space as for the multi-canonical maps on curves.

— The main function HomAdjoints computes the m-adjoint linear systems as a sublinear system of all
homogeneous polynomials of an appropriate degree on X. The linear conditions on the polynomials
are computed from the formal desingularisation of X.

— Using the m-adjoint systems, there are now functions ArithmeticGenusOfDesingularization,
GeometricGenusOfDesingularization and, more generally, Plurigenus for the genera and pluri-
genera of any desingularisation of X. There is also a function IsRational to determine whether X
is rational using Castelnuevo’s criterion on a desinglarisation. This says that X is rational iff the
arithmetic genus and second plurigenus of a desingularisation are both zero.

— For a rational hypersurface X, a well-chosen m-adjoint map will take X to a special rational surface
nicely embedded in projective space (usually a ruled or Del Pezzo surface). There is a function
Classify that finds such an adjoint map, following an algorithm of Josef Schicho, and the special
surface image of X in one of the families of Schicho’s classification.

— Finally, there is a suite of functions to parametrise these special surfaces. These are all based on
algorithms of Schicho and were implemented by him and Beck. The existing Magma functions for
non-singular degree 6,8 and 9 Del Pezzo surfaces are used. The rest are new. They cover quadrics
in P3, ruled surfaces, Del Pezzo surfaces of degree 7 and singular Del Pezzos of degrees 6 and 8 and
functions to reduce low degree Del Pezzos to degree 5 or higher. The only case currently missing is
for degree 5 Del Pezzos and this will be filled with code from Josef Schicho in the near future.

— There is a function ParametrizeProjectiveHypersurface that puts the above ingredients together
to give a single parametrisation function. More generally, ParametrizeProjectiveSurface finds a
birational projection of a projective surface to a hypersurface and then calls the first function.

27

16 Arithmetic Geometry

16.1 Rational Curves and Conics

Removals and Changes:

— The routine LegendresMethod has been removed. This is superseded by routines for solving
conics that are accessed via the standard commands for conics, such as HasRationalPoint and
Parametrization.

New Features:

— HasRationalPoint, RationalPoint and Parametrization are now implemented for general conics
over (absolute) number fields. These make use of the following two items.

— The routine for solving diagonal conics over number fields has been completely rewritten. The new
implementation is fast, and also far more powerful than the previous one (that is, conics can now
be solved over fields with much larger discriminant than before). The algorithm is a variant of
Lagrange’s method, and involves a series of reduction steps in which the conic is replaced by a
simpler conic. Reduction is achieved by finding a short vector in a suitable lattice sitting inside
two copies of the base field. After several reductions, one is often able to find a solution with an
easy search. In other cases, one is unable to reduce further and must call NormEquation to solve
the reduced conic. (This is still vastly superior to calling NormEquation on the original conic.) The
basic reduction loop is enhanced with several tricks; in particular the class group of the base field
may be used, when it is not too large, to reduce much further than would otherwise be feasible.
This code is accessed by HasRationalPoint.

— Diagonalization of conics over number fields is now done by special purpose code, which ensures
that the coefficients of the diagonal are not hard to factor if one is able to factor the discriminant
of the original conic. This code is accessed by DiagonalForm.

16.2 Elliptic Curves
16.2.1 Elliptic Curves over the Rational Field

Removals and Changes:

— In IntegralPoints and SIntegralPoints, the optional arguments Fast and Safe have been re-
moved.

Bug Fixes:

— Some bugs have been fixed in SIntegralPoints.
— The ability to RemoveTorsion and remove generators for FourDescent has been fixed for curves
with j = 0,1728.

New Features:

28

— A new fast implementation of 2-descent is used in TwoSelmerGroup and TwoDescent (for curves
over Q). The new code avoids much of the cumbersome machinery previously used. This is now
suitable for large scale experiments (as it is fast enough, and moreover performance does not suffer
much during long runs). For example it is possible to run through the Cremona database in a day
or so. Furthermore, it has been checked (up to parity, using the root number) for all such curves.
The calling structure has been largely preserved. An additional function TwoCover has been added,
which simplifies some of the work previously performable via CasselsMap; it simply takes a nonzero
element of a cubic algebra over Q and returns a corresponding hyper-elliptic curve.

— A new fast implementation of CasselsTatePairing is provided for curves over Q. A single call
typically takes less than 0.05 seconds (with the dependence on the conductor of the curve being
very mild).

— The Cassels-Tate pairing between an element of order 4 and an element of order 2 in the Tate-
Shafarevich group of an elliptic curve F over Q is also implemented. The input elements are given
as curves C' and D, where C' is a 4-covering over E given as a quadric intersecion, and D is a
2-covering of E (as returned by FourDescent and TwoDescent respectively).

16.2.2 Elliptic Curves over Number Fields

New Features:

— CasselsTatePairing is implemented for curves over number fields. This computes the Cassels-
Tate pairing on the 2-torsion subgroup of the Tate-Shafarevich group. The input consists of two
hyperelliptic curves, as returned by TwoDescent.

16.2.3 Elliptic Curves over Finite Fields

New Features:

— We have added new quasi-quadratic point-counting code from Hendrik Hubrechts for small charac-
teristic p elliptic curves. The code uses p-adic deformation methods and is a highly-tuned adaptation
of his earlier code for general hyperelliptic curves. The algorithm is used in place of canonical lift
or small characteristic SEA for p roughly between 40 and 1000 and for extensions of the prime field
of degree larger than a small number depending on p.

— Point-counting over prime subfields smaller than 222 has been made faster by a factor of almost 2 on
many processors, taking advantage of 64-bit arithmetic. This can be quite useful when calculating
with L-functions of elliptic curves.

16.2.4 Elliptic Curves over Function Fields

New Features:

— TwoSelmerGroup (and TwoDescent) are now much faster. One improvement is to skip working out
the local conditions at places of “not so bad reduction”. Also as noted above, large elements in
product representation are now handled better (such elements arise in the S-unit calculations).

— CasselsTatePairing is implemented for curves over rational function fields F'(t), where F is a finite
field of odd characteristic. This computes the Cassels-Tate pairing on the 2-torsion subgroup of the
Tate-Shafarevich group. The input consists of two hyperelliptic curves, as returned by TwoDescent.

29

16.3 Genus One Models

New Features:

— New routines for minimisation and reduction of genus one curves of degrees 2, 3,4 and 5 are included.
Some of these cases were not available before, and all are new implementations except for reduction
in degrees 2 and 3, which use existing Magma routines (QuarticReduce for degree 2).

16.4 Hyperelliptic Curves
16.4.1 Hyperelliptic Curves over Finite Fields

New Features:

— We have added a small package of functions for genus 2 curves written by Reynald Lercier and
Christophe Ritzenthaler and released under a GPL license. They are based on a new set of absolute
invariants that the authors refer to as Cardona-Quer-Nart-Pujola invariants. The advantage of this
package is that it works in all characteristics.

— There are functions G2Invariants, G2ToIgusalnvariants, and IgusaToG2Invariants to com-
pute the invariants of a genus 2 curve and convert between these and the Igusa J-invariants.
HyperellipticCurveFromG2Invariants finds a curve with given invariants.

— Twists gives all (not just the quadratic) twists of a genus 2 curve over a finite field (of any charac-
teristic). The curve or its invariants can be given as the argument.

— The old GeometricAutomorphismGroup has been replaced with a Lercier/Ritzenthaler version that
works in all characteristics.

— GeometricAutomorphismGroupClassification in their package computes all possible geometric
automorphism groups for genus 2 curves over a given finite field (of any characteristic) and also the
number of isomorphism (over the algebraic closure) classes of curves over the field with each group
of automorphisms.

16.4.2 Hyperelliptic Curves over the Rationals

New Features:

— For a genus 2 curve C, a new implementation of Chabauty’s method combined with the “Mordell-
Weil” sieve is provided, which returns the full set of rational points on C. This is called by
Chabauty(ptJ) where ptJ is a point on the Jacobian of the curve. This point is assumed to
generate the Mordell-Weil group (modulo torsion) of the Jacobian, which must have rank 1 in order
to apply Chabauty’s method. The algorithm also requires one rational point on C' (so does not
apply for curves with no points); if such a point is known, it may be passed in as the optional
argument ptC.

30

16.5 L-Functions

New Features:

— The L-series attached to an Artin representations can now be created and efficiently computed.
(Previously, only the special case of the (-function of a number field was implemented.)

— A new option is available in LSeries of a number field K. If the parameter Method is set to
“Artin”, this creates (i represented internally as a product of L-series attached to the irreducible
representations of the Galois group of K. This allows for more efficient computation in many cases
(although clearly, this depends on the size of the Galois group). When K is abelian, this is the
default method.

— The twisted L-series of an elliptic curve F twisted by an Artin representation A can be constructed
using LSeries(E,A).

— More generally, twists of arbitrary L-series can be constructed using TensorProduct.

31

17 Modular Arithmetic (Geometry

17.1 Hilbert Modular Forms (New)

Features:

— This package computes spaces of cuspidal Hilbert modular forms over an arbitrary totally real
number field F, of any weight whose components are at least 2, on congruence subgroups I'g(NV)
where N is any ideal in the ring of integers of F'. These spaces are created using HilbertCuspForms.

— Computations are done, via the Jacquet-Langlands correspondence, with the aid a suitable order in
some quaternion algebra; this is chosen internally and does not feature in the interface. However,
when creating the space, the user may specify the QuaternionOrder to be used.

— A well-optimized implementation of Dembélé’s algorithm is used for the computations. This relies
in particular on fast routines for certain computations involving ideal classes in quaternion orders.
A major advantage of this algorithm is that these computations (which, in principle, are the most
expensive part of the process) need to be done only once for each base field, and the results can
then be used to compute spaces of (almost) all levels and weights over that field.

— A separate algorithm due to Greenberg and Voight is also implemented for spaces of parallel weight
2. This is used if the user specifies a QuaternionOrder that is unramified at one infinite place.

— The dimension of a space may be computed (which is a nontrivial computation, as dimension
formulae are not available in general).

— Hecke operators can be computed, with respect to some fixed basis of the space. (Currently there
are no conventions regarding the choice of basis.)

— The subspace of new forms, or more generally the subspace new at a given divisor of the level IV,
can be created using NewSubspace. Currently this is restricted to cases where the “new level” is
squarefree.

— The NewformDecomposition of a new space is available, and systems of eigenvalues can be obtained
for the newform corresponding to each Hecke-irreducible component in the decomposition.

17.2 Arithmetic Fuchsian Groups and Shimura Curves

Bug fixes:

— Some improvements have been made to the effectiveness of the FundamentalDomain routine for
Fuchsian groups.

32

18 Geometry
18.1 Incidence (Geometry

New Features:

— Intrinsics have been added by D. Leemans for testing whether a coset geometry is primitive
(IsPrimitive), residually primitive (IsRresiduallyPrimitive), weakly primitive
(IsWeaklyPrimitive) and (IsRresiduallyWeaklyPrimitive).

— The function IsLocallyTwoTransitive tests whether a coset geometry is locally two-transitive,
i.e., whether all of its minimal parabolic subgroups have a two-transitive action on the cosets of the
Borel subgroup.

19 Incidence Structures
19.1 Designs

New Features:

— The function Design(I, t, lambda) has been added to allow the construction of a design from an
incidence structure without checking the design parameters.

— When constructing an incidence structure, the incidence matrix may now be given either as a sparse
matrix or dense matrix.

20 Coding Theory

20.1 Linear Codes over Finite Fields

New Features:

— An [n, k] linear code C is said to be a best known linear [n, k] code (BKLC) if C has the highest
minimum weight among all known [n, k] linear codes. A number of new codes have been added
to the BKLC database constructed and maintained by Markus Grassl. Specifically, 17 codes over
GF(3), 15 codes over GF(4), and 5 codes over GF(7) have been added.

20.2 Quantum Stabilizer Codes

New Features:

— An [[n, k]] quantum stabiliser code @ is said to be a best known [[n, k]] quantum code (BKQC) if
@ has the highest minimum weight among all known [[n, k]| quantum codes. The BKQC database
constructed and maintained by Markus Grassl has been expanded as follows: The maximal length of
codes has been increased from 35 to 50 while the minimum distance of 10 codes has been improved.

33

