
Summary of New Features in Magma V2.10

April 2003

1 Introduction

This document provides a terse summary of the new features installed in Magma for release
version V2.10 (April, 2003). Previous releases of Magma were: V2.9 (May 2002), V2.8 (July
2001), V2.7 (June 2000), V2.6 (November 1999), V2.5 (July 1999), V2.4 (December 1998),
V2.3 (January 1998), V2.2 (April 1997), V2.1 (October 1996), V2.01 (June 1996) and V1.3
(March 1996).

2 Summary

Groups

• Permutation Groups: The performance of the Schreier–Todd-Coxeter–Sims algorithm
for computing the order of a permutation group has been greatly improved in a
number of important contexts. A new algorithm for chief series (developed by Bill
Unger) provides greatly improved performance. The database of primitive permuta-
tion groups has been extended from degree 50 to degree 999.

• Finite Groups: A new algorithm developed by Holt and Cannon that determines the
maximal subgroups of any finite group using a knowledge of the maximal subgroups
of its simple composition factors is included for the first time.

• Finite Groups: The maximal subgroup machinery is now able to access the maximal
subgroups and automorphism groups of a greatly expanded set of simple groups.
These include HS and L(6, 2), Alt(d) (d < 1000), L(2, p), L(2, p2), L(2, p3), L(3, p),
L(3, 8), L(3, 9), S(4, p), and U(3, p) (p prime). This greatly extends the range of
those algorithms used for determining subgroups and automorphism groups. Fast
algorithms for computing all subgroups having index less than some specified (mod-
erate) bound in permutation and pc-groups have been implemented.

• Finite Matrix Groups: It is now possible to compute automorphism groups and deter-
mine isomorphism of any finite matrix group for which it is possible to to compute a
BSGS. A revised version of the package for performing Aschbacher analysis has been
provided by Eamonn O’Brien.

• Group Cohomology: A new module for computing the cohomology of a permutation
group or pc-group developed by Derek Holt is included. This module also provides
machinery for constructing extensions of G-modules and general abelian groups by
general finite groups. It will be extended to include finite matrix groups shortly.

1



• Finitely Presented Groups: A highly tuned version of the Holt algorithm for com-
puting equivalence classes of homomorphisms from a finitely presented group to a
permutation group has been developed. This has been successful in constructing
epimorphisms onto groups of order up to 109.

• Braid Groups: Asymptotically fast algorithms have been implemented for group
operations, lattice operations, normal form computations and for computing the
super summit set and the set of positive conjugates of an element. This work has
as its goal the implementation of a new fast algorithm due to Volker Gebhardt for
solving the conjugacy problem.

• Groups and Monoids Defined by Rewrite Systems: A new version of the KBMAG
package of Derek Holt has been installed. The new installation provides code for the
construction of confluent presentations for finitely presented groups and monoids as
well as short-lex automatic groups. This machinery is an enormous improvement over
the previous KBMAG installation in Magma, particularly in the case of determining
the automatic structure of a group.

Commutative Algebra

• Polynomial Rings and Affine Algebras: A new algorithm by Allan Steel (to be pub-
lished) solves a suite of fundamental problems associated with arbitrary algebraic
function fields. These fields may be constructed as chains of algebraic extensions (us-
ing polynomial quotient rings, affine algebras, or standard algebraic function fields)
and transcendental extensions (using rational function fields). The fields may have
any characteristic and the algebraic extensions may be inseparable (which can hap-
pen in small characteristic). The problems now solved include decomposition of
multivariate ideals and factorization of polynomials over such fields.

Extensions of Rings

• Algebraic Function Fields: Conversion of arbitrary finite extensions of univariate
function fields to simple extensions is possible, thus any field can be converted into
the representation suited best for any given application.

• Algebraic Function Fields: The machinery for relative extensions of function fields has
been extended so that essentially all intrinsics now apply to both absolute extensions
and relative extensions. In particular, divisor theory is supported in the relative case.

• Algebraic Function Fields: Magma 2.10 includes an experimental release of a module
for class field theory of global functions fields. In particular, it is possible to determine
defining equations for arbitrary Abelian extensions.

• Function Fields: The computation of GCDs of polynomials over function fields has
also been greatly improved through use of a new modular algorithm. Factorization
of polynomials over arbitrary algebraic function fields of any characteristic is now
fully supported.

2



• p-adic Rings and Fields: The module for p-adic rings (and fields) and their exten-
sions has been completely rewritten in Magma 2.10, resulting in greatly improved
performance that is highly competitive for cryptographic applications. Furthermore,
the new “Round 4” algorithm of Pauli for factoring polynomials over local fields is
included.

Representation Theory

• Modular Representations: A package is provided which attempts to construct all
(absolutely) irreducible representations of a finite group over a given finite field.
For soluble groups the Brückner adaptation of the Glasby–Howlett method is used.
For non–soluble groups the irreducibles are obtained by chopping up representations
using the Meataxe.

Lie Theory

• Lie Theory: The entire module has been heavily revised and greatly expanded. Only
a few highlights are noted here.

• Coxeter Groups: A new category of Coxeter groups has been implemented. It rep-
resents elements as words in the standard Coxeter group presentation. The normal
form of an element is found using an efficient new algorithm developed by Robert
Howlett.

• Reflection Groups: Some basic functions are now provided for creating and identifying
reflection groups over an arbitrary field. The functionality for real reflection groups
has been expanded.

• Group of Lie type: A much faster algorithm is now used for multiplying elements in
groups of Lie type. The standard automorphisms of these groups are available (i.e.
inner, diagonal, diagram, and field automorphisms).

• Lie Group Representations: The highest weight representations of a group of Lie
type can be computed—this gives all rational representations over the base field.

3



Algebraic Geometry

• Schemes: Maps between schemes can now be represented with multiple sets of poly-
nomials, which must agree wherever both sets define a valid map. This allows the rep-
resentation of true morphisms. Additionally, a routine is available that uses Groebner
basis techniques to derive extra sets of defining equations, to extend the domain of
definition of a map. For maps between smooth curves, this always yields a morphism.
A routine is provided that properly tests a map for birationality and finds a birational
inverse, if it exists.

• Curve Maps: Maps between curves can now be used to pull back functions, differen-
tials and divisors and to push forward functions and divisors.

• Projective Varieties (Local solubility): Given a projective variety over Q or over a
number field, one can now test if there are any points over the completion of the base
field at a finite prime. For plane curves, one can choose to check solubility of the
desingularised curve. The system will perform the necessary blowups as necessary.
For hyperelliptic curves, local solubility at a finite prime with a sufficiently large
residue field of odd characteristic is tested using an algorithm that is independent of
the size of the residue field.

• Plane Curves: Plane curves and their function fields are now tightly integrated. It
is now possible go backwards and forwards between the coordinate rings of a curve
and its function field and to construct projective embeddings from functions.

• Elliptic Curves: 2-Selmer groups and 2-Isogeny Selmer groups of elliptic curves over
number fields can now be computed explicitly and are returned as abstract abelian
groups. Maps are provided to represent elements of the Selmer group as elements of
etale algebras and to get the corresponding principal homogeneous space, represented
as a cover of the elliptic curve.

• Elliptic Curves: The Magma V2.9 Cremona database of elliptic curves (up to con-
ductor 10 000) has been replaced in V2.10 by a version that includes all curves having
conductor up to 20 000.

• Modular Forms: William Stein has supplied a new revision of his packages for mod-
ular symbols and modular forms.

• Subgroups of PSL(2, R): A new revision of Helena’s Verrill’s package for subgroups
of PSL(2, R) has been installed.

• Numerical Graded Rings: The existing K3 database in Magma contains the 391
examples of K3 surfaces in the known lists. The same ideas have now been used to
construct much bigger lists of K3 surfaces, that include all possible configurations of
input data, (Gavin Brown).

4



Incidence Structures

• Networks: Flow networks have been introduced as a new type. These may have
multiple edges and loops. Two flow algorithms have been implemented, the Dinic
algorithm and the push-relabel method.

• Graphs: Magma V2.10 contains an implementation of the linear-time algorithm of
Hopcroft and Tarjan for finding the 3-connected components of a graph. In addition,
it is now possible to determine the vertex connectivity and the edge connectivity of a
graph. Finally, a maximum matching algorithm has been implemented for bipartite
graphs.

• Incidence Structures and Designs: A much faster but more space expensive mecha-
nism is provided to test whether a structure is t-balanced.

• Finite Projective Planes: A much improved method is used to test whether an in-
cidence structure is a finite projective plane. The impact of the new method is
particularly dramatic when attempting to construct planes of large order.

Coding Theory

• Linear Codes over Finite Fields: Magma V2.10 contains a database of constructions
of best known codes up to length 100 over GF (4). The codes of length up to 18 are
optimal. The database is over 98 per cent complete with only 73 of the 5150 codes
missing, the first such missing code occurs at length 92. Many of the codes con-
structed in this database have bounds that are vast improvements on the previously
bounds for best codes over GF (4). (Marcus Grassl and Greg White).

• Linear Codes over Finite Rings: Magma V2.10 supports error- correcting codes over
integer residue rings and Galois rings, with specialised functionality for codes over
Z4, the ring of integers modulo 4. The machinery for codes over general finite rings
includes basic constructions such as cyclic code and permutation code and the deter-
mination of the complete weight enumerator and Hamming weight distribution.

• Linear Codes over Z4: Features include the Gray map and a host of specific con-
structions including Kerdock, Preparata, Reed–Muller, Goethals codes and more.
Optimised code for calculating the Lee and Euclidean weight distributions is in-
cluded.

3 Removals and Changes

This section lists the most important changes in Version 2.10. Other minor changes are
listed in the relevant sections.

– The user interface for the Number Field Sieve (NFS) integer factorization package has been com-
pletely rewritten. All of the previous NFS intrinsics have been removed and replaced with new
equivalents.

5



4 Documentation

New chapters in the Handbook for V2.10 are:

– Cohomology

– Introduction to Lie Theory

– Root Systems

– Coxeter Systems

– Coxeter Groups (the previous Coxeter Group chapter has been renamed to “Coxeter Groups as
Permutation Groups”)

– Numerical Graded Rings

– Networks

There has been some rearrangement of chapters within the Handbook.

The HTML version of the Handbook now has an improved index (with more detailed
subindices).

5 Aggregates

5.1 Mappings [HB 13]

New features:

– The intrinsic Components returns the maps which were composed to form the input.

6 Semigroups and Monoids

6.1 Monoids Defined by Rewrite Systems [HB 15]

The 2001 version of the kbmag package of Derek Holt has been installed. The first Magma
version of this package was released in V2.5 (July 1999) but it suffered from numerous
problems. Since then Derek Holt revised his package and the revised edition was installed
from scratch by Graham Matthews. The new installation works brilliantly – the various
problems that crippled the V2.5 installation have all been overcome. The functionality is
unchanged.

New features:

– A new installation of the entire program provides much greater reliability and efficiency.

6



7 Groups

7.1 Permutation Groups [HB 17]

New Features:

– The database of primitive groups has been extended to degree 999 by Colva Roney-Dougal and
Bill Unger. We believe the list to be complete. Numbering from Sims’ list of degree up to 50 is
changed. There are also added access functions, but the basic functions PrimitiveGroup(d,n)

and NumberOfPrimitiveGroups(d) will work as before. A new function, which has been added, is
PrimitiveGroupIdentification.

– A new FPGroupStrong algorithm has been implemented, a combination of STCS, BCS verification
and results of Volker Gebhardt.

– The range of groups that MaximalSubgroups and AutomorphismGroup may be applied to is in-
creased. The almost simple groups database now includes HS and L(6, 2). Derek Holt and Colva
Roney-Dougal have also supplied routines so that the maximal subgroups and automorphism groups
of the groups Alt(d) (d < 1000), L(2, p), L(2, p2), L(2, p3), L(3, p), L(3, 8), L(3, 9), S(4, p), and
U(3, p) (p prime) may be found as if they were in the database. Functions MaximalSubgroups and
AutomorphismGroup may be applied to any permutation group with all non-abelian composition
factors in the database or listed above.

– A function DoubleCosetRepresentatives, computing a set of representatives of the double cosets
of subgroups H and K of a permutation group G has been provided.

Bug fixes:

– A bug in computing an EARNS for a primitive group has been fixed.

– Several memory leaks, particularly associated with computing socle quotients and socle factors,
have been stopped.

– Fixed user reported bug in ReduceGenerators.

7.2 Matrix Groups over Finite Fields (Aschbacher Analysis) [HB
18]

A revised version of this package that performs Aschbacher analysis has been provided by
Eamonn O’Brien.

Changes:

– The intrinsics BlockSystem and TensorInducedFactors have been removed.

New features:

– The intrinsic NormalSubgroupRandomElement returns a random element of the normal closure of a
subgroup given in terms of normal generators.

– The intrinsic ExtraSpecialNormaliser returns the action of the generators of a matrix group on
an normal extraspecial or symplectic subgroup.

7



– The intrinsic ExtraSpecialAction gives the action of an element on an extraspecial or symplectic
group.

– The intrinsic ExtraSpecialBasis returns a basis of an extraspecial or symplectic subgroup nor-
malised by the group.

– The intrinsic TensorInducedAction returns the tensor induced action of an element.

– The intrinsic Blocks returns the blocks of imprimitivity of a matrix group.

– The intrinsic ImprimitiveAction gives the action of an element on a set of blocks of imprimitivity.

7.3 Finite Soluble Groups [HB 19]

Bug Fixes:

– A bug in the implementation of the collection algorithm has been fixed.

7.4 Databases of Groups [HB 24]

Changes:

– The database of primitive groups has been extended to degree 999 by Colva Roney-Dougal and
Bill Unger. We believe the list to be complete. Numbering from Sims’ list of degree up to 50 is
changed. There are also added access functions, but the basic functions PrimitiveGroup(d,n)

and NumberOfPrimitiveGroups(d) will work as before. A new function, which has been added, is
PrimitiveGroupIdentification.

– The almost simple groups database now includes HS and L(6, 2). Derek Holt and Colva Roney-
Dougal have also supplied routines so that the maximal subgroups and automorphism groups of the
groups Alt(d) (d < 1000), L(2, p), L(2, p2), L(2, p3), L(3, p), L(3, 8), L(3, 9), S(4, p), and U(3, p) (p
a prime) may be found as if they were in the database.

Bug Fixes:

– A bug in the identification of groups in the small groups database has been fixed.

7.5 Finitely Presented Groups [HB 26]

Changes:

– A new method has been implemented for computing preimages of submodules of a K[G]-module
M , defined by an elementary abelian section of a finitely presented group G. The new approach
yields significantly reduced running times and presents an important improvement to the tools for
constructing normal subgroups of finitely presented groups.

– The possibility of imposing time limits has been provided for the functions LowIndexSubgroups and
LowIndexSubgroupsProcess. This gives the user increased control when employing these functions
in combination with other strategies in the search for subgroups satisfying certain properties.

New features:

8



– A new function, Homomorphisms, computing equivalence classes of homomorphisms from a finitely
presented group F to a permutation group G modulo a user specified subgroup of the automorphism
group of G has been provided. The efficient implementation of the underlying backtrack search
allows to compute quotients of order 108 or 109 for finitely presented groups with few generators in
very reasonable time. An interactive version of this algorithm exists as well.

– Building on the above machinery, functions have been implemented to enumerate all epimorphisms
of a finitely presented group onto any simple group having order less than 109. The main function
is SimpleQuotients and, in addition, a process version is provided.

– The new function IsPerfect, testing whether a finitely presented group is perfect, has been pro-
vided.

– The function AbelianQuotientInvariants has been improved by the use of new sparse matrix
techniques.

Bug fixes:

– A bug in simplifying presentations using Tietze transformations has been fixed. This problem
affected various other functions making indirect use of Tietze transformations.

– A problem with the sub<G|f> constructor, creating a subgroup of G as point stabiliser of the
transitive permutation representation f was fixed. It is now checked that f is transitive and invalid
data is reported as runtime error.

7.6 Braid Groups [HB 29]

The implementation of braid groups in Magma has been revised completely for version
V2.10. Working with both Artin’s original presentation and the band generator presen-
tation introduced by Birman, Ko and Lee is now fully supported and elements can be
represented as words or in terms of simple elements as desired. Both presentations and
different representations of elements can be used simultaneously.

New features:

– The following functions for controlling for a given braid group B the default presentation used for
B, the element representation used for arithmetic operations with elements of B, and the print
format for elements of B have been provided: GetPresentation, SetPresentation, GetForceCFP,
SetForceCFP, GetElementPrintFormat and SetElementPrintFormat.

– For accessing representations of elements, the functions WordToSequence, Infimum, Supremum,
CanonicalLength and CanonicalFactorRepresentation have been provided.

– Various normal forms of elements can be computed with the new functions LeftNormalForm,
RightNormalForm, LeftMixedCanonicalForm and RightMixedCanonicalForm.

– The new functions Cycle and Decycle implement the cycling and decycling operations introduced
by Garside.

– The new boolean predicates IsSimple, IsSuperSummitRepresentative and IsConjugate for ele-
ments have been introduced. Moreover, the partial orderings on the elements of a braid group can
be accessed with the new operators ge and le and with the predicates IsGE and IsLE. The latter
versions allow specification of a presentation.

9



– The functions LeftGCD, RightGCD, LeftLCM and RightLCM, providing the lattice operations for
elements of a braid group, have been introduced.

– The set of positive conjugates of an element and the super summit set of an element can be computed
with the new functions PositiveConjugates and SuperSummitSet, respectively. Alternatively,
these sets can be computed using the interactive versions of these tools.

– The functions SuperSummitInfimum, SuperSummitSupremum and SuperSummitCanonicalLength,
computing invariants of the conjugacy class of an element, have been provided.

– The symmetric representation, the integral Burau representation and the modular Burau represen-
tations of a braid group can be created using the new functions SymmetricRepresentation and
BurauRepresentation.

Changes:

– Pseudo random elements of a braid group can now be created using each of the possible represen-
tations of elements. The relevant functions are Random, RandomWord and RandomCFP.

– Arithmetic operations now are by default performed using representation of the operands in terms
of simple elements. In general, this yields much better performance.

Removals:

– The function NormalFormWord has been removed, as it was made obsolete by the more general
representation used for elements and does not correspond to the new design of the category.

7.7 Groups Defined by Rewrite Systems [HB 30]

The 2001 version of the kbmag package of Derek Holt has been installed. The first Magma
version of this package was released in V2.5 (July 1999) but it suffered from numerous
problems. Since then Derek Holt revised his package and the revised edition was installed
from scratch by Graham Matthews. The new installation works brilliantly – the various
problems that crippled the V2.5 installation have all been overcome. The functionality is
unchanged.

New features:

– A new installation of the entire program provides much greater reliability and efficiency.

7.8 Automatic Groups [HB 31]

The 2001 version of the kbmag package of Derek Holt has been installed. The first Magma
version of this package was released in V2.5 (July 1999) but it suffered from numerous
problems. Since then Derek Holt revised his package and the revised edition was installed
from scratch by Graham Matthews. The new installation works brilliantly – the various
problems that crippled the V2.5 installation have all been overcome. The functionality is
unchanged.

New features:

– A new installation of the entire program provides much greater reliability and efficiency.

10



7.9 Subgroups of PSL(2, R) [HB 33]

Bug fixes:

– Fixed printing of congruence subgroups given in terms of intersection of the basic congruence sub-
groups.

– Fixed testing of equivalence of matrices with respect to the action of some congruence group.

– Fixed testing of equivalence of points in the upper half plane under action of some congruence
subgroup.

– Corrected type of labels attribute of the SymFry type.

New features:

– New function FindWord which expresses an element of a congruence subgroup in terms of the given
list of generators for the group.

– Function CongruenceSubgroup now works properly with dirichlet characters allowed to be used in
defining a congruence subgroup.

– For convenience, the signature product SpcHypElt * RngElt is now supported.

8 Basic Rings

8.1 Real and Complex Fields

New features:

– The extended reals (type ExtRe) have been introduced to provide a satisfactory common universe
for Infinity and integers/rationals/reals. This allows sequences of valuations to be created even
when some of the valuations are infinite.

Bug fixes:

– The calculation ∞−∞ no longer crashes.

8.2 Polynomial Rings [HB 38]

New features:

– Factorization of polynomials over arbitrary algebraic function fields of small characteristic is now
supported for the first time (see Commutative algebra below).

– New fast modular algorithm for GCD of polynomials over algebraic function fields and quotient
rings which are fields (both univariate and multivariate).

– The polynomial quotient rings K[x]/〈f〉, where K is a field and f may be reducible, are now fully
supported as general Euclidean rings.

11



9 Linear Algebra and Module Theory

9.1 Matrices [HB 42]

New features:

– Linear algebra over the polynomial quotient rings K[x]/〈f〉, where K is a field and f may be
reducible, is now fully supported.

– New functions and procedures RemoveRow, RemoveColumn and RemoveRowColumn to remove a row
and/or a column from a matrix.

10 Commutative Algebra

10.1 Ideal Theory and Gröbner Bases and Affine Algebras [HB
47]

A new algorithm by Allan Steel (to be published) solves a suite of fundamental problems
associated with arbitrary algebraic function fields. These fields may be constructed as
chains of algebraic extensions (using polynomial quotient rings, affine algebras, or standard
algebraic function fields) and transcendental extensions (using rational function fields).
The fields may have any characteristic and the algebraic extensions may be inseparable
(which can happen in small characteristic).

The problems now solved include decomposition of multivariate ideals and factorization
of polynomials over such fields.

New features:

– Primary decomposition and radical computation is now fully supported for ideals over arbitrary
algebraic function fields of any characteristic (including non-perfect fields).

– Primary decomposition and radical computation is now supported for ideals over finite fields of
arbitrary dimension.

– Factorization of polynomials is now fully supported over arbitrary algebraic function fields of any
characteristic.

– New fast modular algorithm for GCD of polynomials over arbitrary algebraic function fields.

11 Extensions of Rings

11.1 Algebraic Number Fields [HB 50]

Changes:

– The ideal<> constructor now checks that the input defines an ideal.

12



– Factorization of ideals has been improved by storing a product representation on appropriate ideals
and using a coprime factorization algorithm on this partial factorization.

– Changed SplittingField for polynomials over Q to allow it to return a tower of fields rather than
a simple optimized representation.

– Improved performance of OptimizedRepresentation and LLL by using a different LLL-version.
Furthermore, if this function fails to find a better representation, the old representation is returned.

– A rewrite of the code computing completions of number fields and prime ideals using the new local
rings and allowing for precision change.

New Features:

– Homomorphisms from orders of algebraic number fields can be created by giving the images of the
basis elements (not just the primitive element).

– The greatest common divisor of two ideals can be obtained.

Bug Fixes:

– Bug fix in IsSubfield, in the pre-image code for homomorphisms between orders and number
fields, in the pre-image code for the unit-map.

11.2 Quadratic Fields [HB 52]

New Features:

– Conductor now returns the ramified real places of the field if asked for.

Bug Fixes:

– A bug involving preimages of ideals under the class group map has been fixed.

– Any number of problems with the conversion of quadratic forms to and from ideals have been fixed.

11.3 Cyclotomic Fields [HB 53]

New Features:

– Conductor now returns the ramified real places of the field if asked for.

– Some generic functions to check an element for being a root of unity, returning the torsion subgroup
of some rings.

11.4 Abelian Extensions [HB 54]

New Features:

– Better support for the computation of automorphism groups of class fields.

– Computation of the second cohomology group.

13



11.5 Algebraic Function Fields [HB 57]

The functionality of extensions of algebraic function fields has been extended to almost
match that of ordinary algebraic function fields. The functionality of the orders of alge-
braic function fields has been extended to almost match the functionality of the orders of
algebraic number fields.

Removals and Changes:

– The tuples returned by DecompositionType are now of the form 〈f, e〉 where f is the inertia degree
and e is the ramification degree of the corresponding ideal or place in the decomposition. It is no
longer always necessary to compute the decomposition to obtain this information.

– Factorization of ideals has been improved by storing a product representation on appropriate ideals
and using a coprime factorization algorithm on this partial factorization.

– Eltseq of an element of an order is now over the field of fractions of the coefficient ring.

– Printing of divisors is no longer only done as a linear combination of places. In some cases this was
too expensive.

New Features:

– Experimental introduction of class field theory for function fields. The new facilities include func-
tions for RayClassGroup computation, defining equations of class fields and computation of norm
groups.

– Places and Divisors of extensions of algebraic function fields can be created. They have the full
functionality of the extensions of rational function fields except for the functions mentioned below.

– Differentials of extensions of algebraic function fields can be created. They have the full functionality
of the extensions of rational function fields except for the functions mentioned below.

– All functions for algebraic function fields can be called on extensions of function fields with the
exception of those involving series rings, galois groups and subfields. These functions are Reduce,
Expand, Residue, GaloisGroup, Subfields, Automorphisms, IsSubfield and IsIsomorphic.

– The functions Modexp and Modinv can now be called on elements of orders of all algebraic function
fields.

– RationalFunction can now be returned over a coefficient ring or field given as a second argument.

– The following intrinsics have been preexisting for orders of number fields and have recently been
added for orders of algebraic function fields :

– !! for ideals,

– + for orders,

– AbsoluteOrder, AbsoluteDiscriminant, Basis of an order of an algebraic function field over
a ring given as a second argument and BasisMatrix of an order,

– Different for orders, ideals and elements,

– Index, EquationOrder, IsAbsoluteOrder for orders,

– IsInert, IsRamified, IsSplit, IsTamelyRamified, IsTotallyRamified, IsTotallySplit,
IsUnramified, IsWildlyRamified for ideals and orders,

– creating an order from a basis,

14



– PrimitiveElement, Simplify, SubOrder, pMaximalOrder, pRadical for orders,

– ColonIdeal, meet of an ideal with a ring, IsPower and Root functions for ideals.

– The function RationalExtensionRepresentation now allows even relative extensions to be ex-
pressed as a direct extension of the rational function field. Expressing an algebraic function field as
an extension of one of its coefficient fields can be accomplished using UnderlyingField.

– Completions of non relative function fields and their orders at ideals of degree one over the constant
field (places of degree 1) can now be taken.

– ConstantFieldExtension extends a function field by extending the constant field.

– The following intrinsics were preexisting for extensions of rational function fields and are now
available for extensions of algebraic function fields :

– Differential, Differentiation, SeparatingElement, DifferentiationSequence,

– DifferentialSpace, DifferentialBasis,

– SpaceOfDifferentialsFirstKind (SpaceOfHolomorphicDifferentials),

– BasisOfDifferentialsFirstKind (BasisOfHolomorphicDifferentials),

– CartierRepresentation, HasseWittInvariant, ClassGroupPRank,

– Identity of a differential space, IsCanonical,

– Divisor, PrincipalDivisor,

– RamificationDivisor , WronskianOrders, GapNumbers, WeierstrassPlaces,

– DifferentDivisor, CanonicalDivisor, ComplementaryDivisor,

– Identity of a divisor group,

– Degree, Minimum, IsConstant, IsSeparating, Zeros, Poles,

– SerreBound, IharaBound,

– NumberOfPlacesOfDegreeOneBound, NumberOfPlacesOfDegreeOne,

– NumberOfPlaces,

– HasPlace, Places, RandomPlace, DivisorOfDegreeOne,

– ClassGroupGenerationBound, ClassNumberApproximation,

– LPolynomial, Genus, ExactConstantField,

– DegreeOfExactConstantField (DimensionOfExactConstantField) .

Some of these functions compute the rational extension representation of the relative field and
perform the computations on this. Others can do the computations on the relative field directly.

– By means of a Type parameter to FunctionField rational function fields can be created as algebraic.
Extensions of such fields will not be considered relative but still as rational extensions.

– The Trace and Norm of an element can be computed over a coefficient ring or field given as a second
argument.

– The ideal constructor has been expanded to allow an ideal to be created from a basis and a denom-
inator. The result is checked to see whether the input did indeed define a true ideal.

– Homomorphisms from orders of function fields can be created by giving the images of the basis
elements.

15



– An extra argument has been added to Zeros, Poles and CommonZeros. The first argument can now
be the field the places to be returned should be of.

Bug Fixes:

– A bug in Expand has been fixed.

11.6 Newton Polygons [HB 60]

New Features:

– It is now possible to create a newton polygon given a polynomial over the integers or rationals, a
number field or an order of such or an algebraic function field or an order of such and either a prime
number or a prime ideal, respectively.

– For any newton polygon the function Slopes will return the slopes of all the faces of the newton
polygon.

11.7 p-adic Rings and Fields [HB 61]

The p-adic rings and fields have been completely rewritten. The new implementation is sub-
stantially faster, to the extent that Magma implementations of point-counting algorithms
such as the AGM are now within an order of magnitude of optimized C implementations.
The new p-adics are built around a fixed precision model, where all elements are of the same
precision; while it is still possible to construct free precision rings (where each element can
have a different precision), these are internally mapped into the fixed precision structures.
Thus, the user can sacrifice automated precision management for greater speed.

New Features:

– There are now four ring/field types: RngPadRes and RngPadResExt, representing fixed-precision
rings, and RngPad and FldPad, representing free precision rings and fields, respectively.

– The number of constructors for the p-adics has been cut substantially. In particular, the allowed pa-
rameters of the ext constructor have been reduced and all LocalRing and LocalField constructors
have been removed. Similarly, the allowed parameters of the elt constructor have also changed.

– In free precision rings, exact elements are no longer supported (that is, the rationals are no longer
directly embedded into the p-adics). For instance, in the previous implementation, the element 1
could be represented exactly in a p-adic ring; now, it can only be represented up to some finite
precision.

– Extensions may now be constructed in chains of arbitrary height. This means that intrinsics such
as Degree, RamificationDegree, InertiaDegree, Eltseq, Trace, Norm, and MinimalPolynomial

are now overloaded to take a second argument, which is the base ring or field with respect to which
the calculated is performed.

– The intrinsics EisensteinPolynomial, InertialPolynomial, and InertiaRing have been re-
moved.

– The attribute SeriesPrinting has been removed.

16



– The generators of a local ring or field L have now changed. In previous versions of magma, L.1
referred to the uniformizing element, and L.2 referred to the inertial element. Now, a local ring or
field L has only one generator, L.1, which refers to the element whose powers generate a basis of L
as a vector space over its base ring or field. The uniformizing element can still be obtained using
UniformizingElement.

– Equality of elements in a free precision ring is now banned, due to the fact that there are several
possible definitions of equality in an inexact ring.

– The intrinsics LocseqInert, InertseqpAdic, and Locseq have been removed, as their functionality
is now available in Eltseq.

– In a free precision p-adic ring R, division by / now returns an element in its field of fractions,
whereas div returns an element in R (and hence may fail). An intrinsic IsExactlyDivisible has
been added which allows the user to check whether div will succeed.

– The Hensel lifting of polynomial factorizations has been improved, and now the intrinsic HenselLift
can take a sequence of factors, instead of just two factors.

– Intrinsics InverseSqrt, InverseSquareRoot and InverseRoot have been added, which perform
efficient computation of x−1/n for some local ring or field unit x.

– The intrinsic HasPRoot has been removed.

12 Representation Theory

12.1 K[G]-Modules and Group Representations [HB 73]

A package is provided which attempts to construct all (absolutely) irreducible representa-
tions of a finite group over a given finite field. For soluble groups the Brueckner adaptation
of the Glasby–Howlett method is used. For non–soluble groups the irreducibles are ob-
tained by chopping up representations using the Meataxe.

13 Lie Theory

13.1 Root Systems and Root Data (New) [HB 79–80]

We now distinguish between root systems, defined over real vector spaces, and root data,
defined over integer lattices. The former are designed for the study of reflection groups
and Coxeter groups; the later are designed for Lie algebras and groups of Lie type. A
small number of commands that worked previously will no longer work: for example
RootDatum("H3") must be changed to RootSystem("H3") since the root system of type
H3 cannot be defined in an integer lattice.

13.2 Coxeter Systems (New) [HB 82]

Cartan matrices have been expanded to include infinite Coxeter systems. Cartan names
have been extended to include affine Coxeter systems. It is now possible to compute with

17



Coxeter matrices, Coxeter graphs, and Dynkin digraphs. We can identify and construct
affine and hyperbolic Coxeter systems.

13.3 Coxeter Groups (New) [HB 83]

A new category of Coxeter groups has been implemented. It is called GrpFPCox and it
represents elements as words in the standard Coxeter group presentation. Elements are
automatically put in normal form using an efficient new algorithm designed and imple-
mented by Robert Howlett.

13.4 Coxeter Groups as Permutation Groups [HB 84]

The old category GrpCox of finite Coxeter groups as permutations on the roots has been
renamed GrpPermCox. Such a group can be created from either a root system or a root
datum.

13.5 Reflection Groups [HB 85]

We now have some basic functions for creating and identifying reflection groups over an
arbitrary field. The functionality for real reflection groups has been expanded.

13.6 Groups of Lie Type [HB 86]

Changes:

– A much faster algorithm has been implemented for multiplication in groups of Lie type. This requires
some preprocessing, so it may take longer to create such a group. The previous method is still
available as an optional parameter. We can now compute the multiplicative Jordan decomposition
of an element.

New features:

– The standard automorphisms of these groups are available (i.e. inner, diagonal, diagram, and field
automorphisms). In many cases these give the full automorphism group.

– The highest weight representations of a group of Lie type can be computed—this gives all rational
representations over the base field. The computation of the inverse of a representation of a group
of Lie type over its base field can be achieved using GeneralisedRowReduction. We have a new
function to compute the adjoint representation and a faster method for computing the standard
representation.

18



14 Algebraic Geometry

14.1 Schemes [HB 87]

Removals and Changes:

– Improved checking for inverses when the domain is not an ambient.

– AlternateDefiningPolynomials has been renamed to AllDefiningPolynomials which includes
the original definition of the map.

New Features:

– More checks for well–definedness when multiple sets of defining equations are given.

– Multiple definitions for the inverse of a map can be given. Such definitions can be retrieved using
AllInverseDefiningPolynomials.

– Inverses of projective closure maps are set on creation.

– The function Difference will remove from a scheme the intersection of that scheme with a second
argument (taking into account multiplicities) and return the closure of this.

– The functions IntegralSplit, Numerator and Denominator have been provided for working with
function field elements and associated schemes, as well as AlgebraicFunction and Restriction.

– Projective maps can be created using function field elements by the function ProjectiveMap.

– A test for the birationality of scheme maps is provided by IsInvertible. A birational inverse is
returned if it exists.

– GenericPoint returns a point in the pointset of the function field of the scheme.

– Compositions of scheme maps can be multiplied out fully (including multiple definitions) using
Expand. A map between schemes can be Extended to be defined on the whole domain. For a map
with multiple definitions Prune will remove any unnecessary definitions.

– It is now possible to test whether a pointset over a local field is empty using IsEmpty. Further one
can use IsLocallySolvable to test whether a scheme over a number field has a local point and
LiftPoint to increase the precision of a point.

– One can check whether a function field can be computed for a scheme using HasFunctionField.

Bug Fixes:

– Greater strictness on base rings for which Gröbner basis algorithms are not available. One can no
longer retrieve the ideal of a scheme over a ring without these algorithms or do anything which
requires such information.

14.2 Algebraic Curves [HB 88]

New Features:

– The functions FormalPoint and EvaluateByPowerSeries use series rings to work with points.

– Degree and RamificationDivisor of maps between schemes. Also the Pullback and Pushforward

function field elements, places and divisors and curve places and divisors along a map between
schemes.

19



14.2.1 Function Fields and Divisors on Curves

New Features:

– Some functions for curves relating to function fields have been added. These are NumberOfPlaces,
CartierRepresentation, FieldOfGeometricIrreducibility, CommonZeros, Reduction, GCD and
LCM of divisors, ResidueClassField and Lift at a place, IsAbsolutelyIrreducible, ClassNumber
and GlobalUnitGroup.

14.3 Elliptic Curves [HB 91]

Removals and Changes:

– Elliptic curves can now be created from general schemes instead of only hyperelliptic curves. Simi-
larly, elliptic curves can now be created from a general scheme and a point rather than a curve and
a point. Only one map is returned in each case but it is birational.

– Redesigned routines to put a curve of genus 1 into Weierstrass form. Many commonly occurring
cases are recognised and handled more efficiently. The system will automatically choose the most
appropriate method.

– Elliptic curves may now be created by specifying the polynomials, similar to the hyperelliptic
case. To resolve a naming conflict the former intrinsic EllipticCurve(j) has been changed to
EllipticCurveFromjInvariant(j).

New features:

– Elliptic curves can be created from a curve of genus 1 and a place of degree 1.

– HyperellipticPolynomials of an elliptic curve can be retrieved as for hyperelliptic curves.

– Elliptic curves can be created from the corresponding hyperelliptic polynomials.

– The DualIsogeny of an isogeny of an elliptic curve can be obtained as well as the TwoIsogeny of a
point of an elliptic curve.

14.3.1 Elliptic Curves over the Rational Field

New features:

– The improved bound (due to Samir Siksek) on the difference between the naive and canonical heights
of a point has been implemented. This bound is now used internally for the group closure operation
and is accessible via SiksekBound.

– The Cremona database of elliptic curves now includes all curves of conductor up to 20 000.

Bug fixes:

– A long-standing bug in the 2-descent for certain curves has been fixed. Up to conductor 10 000
there were 14 curves affected, the smallest being 903B3.

20



14.3.2 Elliptic Curves over an Algebraic Number Field

New features:

– IsIntegralModel and IntegralModel for elliptic curves over number fields.

– IsIntegralModel for elliptic curves at a given prime ideal of a number field.

– Several functions have been provided which work with elliptic curves over number fields. They are
the Reduction of a curve at an ideal, and the TorsionBound, pPowerTorsion and TorsionSubgroup

of a curve.

– For isogenies between elliptic curves defined over number fields, SelmerGroup has been implemented.
Accompanying this are the functions IsogenyMu and RankBound.

– The functions AbsoluteAlgebra, pSelmerGroup and LocalTwoSelmerMap have been provided for
working with etale algebras.

14.4 Hyperelliptic Curves [HB 92]

Removals and Changes:

– The input arguments of the HyperellipticCurve intrinsic that creates an hyperelliptic curve
have been swapped for general consistency. If f(x) and h(x) are two univariate polynomials then
HyperellipticCurve(f, h) returns the curve defined by the equation y2 + h(x)y = f(x). (For-
merly the syntax was HyperellipticCurve(h, f).)

– Again for consistency, the input polynomials have been swapped in the intrinsics IgusaInvariants,
JInvariants, ScaledIgusaInvariants and IgusaClebschInvariants. A typical call to compute
the Igusa J-invariants of the curve y2 + h(x)y = f(x) would be IgusaInvariants(f, h).

14.5 Numerical Graded Rings (New) [HB 99]

The K3 database in Magma contains the 391 examples of K3 surfaces in the known lists
(excluding various standard degenerations). These were created by assembling a lot of
data that should occur on these surfaces, feeding it into the Riemann–Roch formula to
get a Hilbert series, and then attempting to describe a plausible K3 surface embedded
in weighted projective space that had that Hilbert series. The ideas are described in the
paper

S. Altınok, G. Brown, M. Reid, Fano 3-folds, K3 surfaces and graded rings, Contemp.
Math. 314, 2002, pp.25–61.

The same ideas have now been used to make much bigger lists of K3 surfaces, that
include all possible configurations of input data. The price is that the new lists (one for
each integer ≥ −1, and each of size between 4000 and 6500) contain many very complicated
surfaces that need to be embedded in very large weighted projective spaces, that is, in very
high codimension. However, the construction of the lists does include some tricks for
making these candidate descriptions reasonable. The main one is to recognise that the
surfaces are related by projections. In the easiest cases, so–called Type I projections,
this is simply the elimination of a variable from the space. Thus if one has information

21



about the projective space after projection, it is easy to inherit that before projection by
reintroducing the variable. This is described in the forthcoming paper

G. Brown, Datagraphs in algebraic geometry, to appear in Proceedings of SNSC01, F.
Winkler (ed), RISC-Linz, 2001.

Notice that these routines do not describe explicit graded rings: they do not explain
how to write the equations, but only say which weighted variables should be used in the
equations. (The Hilbert series does include more information, but still much less than
would dictate explicit equations, in general.) The process of recovering equations through
projections is called ‘unprojection’, and that is still some way off being implemented.

The new packages still generate only lists of K3 surfaces. But prototype versions have
been used experimentally in PhD theses over the past two years to generate Fano 3-folds
and Calabi–Yau 3-folds. A graduate project also made lists of subcanonical curves using
similar methods. These will be incorporated into Magma in due course.

15 Incidence Structures

15.1 Graphs [HB 102]

Changes:

– The semantics for graph equality have been made consistent with the fact that graphs may have
different labellings and/or different supports. If G and H are two graphs, G eq H if and only if G
and H are structurally equal, if they have the same support and if they have the same vertex and
edge labelling.

– If G is a graph with support S and vertex and/or edge labels L, the function StandardGraph returns
a graph H with same vertex and edge set as G, with vertex and/or edge labels L, but with standard
support 1, . . . , Order(G).

– The interface allowing for vertex and edge addition or deletion has been modified so to keep in line
with the Magma philosophy. In some instances it was possible to specify a vertex or an edge by
means of integers in the appropriate range. Now vertices and edges will have to be specified by a
standard Magma object of type GrphVert and GrphEdge respectively.

The old interface has been retained for backward compatibility but is no longer documented.

– Similarly, the signature for the function AssignLabels has been modified so that vertices and edges
are now only specified by objects of type GrphVert and GrphEdge respectively. Again, previous
signatures that referred to vertices and edges by means of integers have been retained for backward
compatibility.

– Our definition of a eulerian graph or digraph has been modified in order to conform with the
currently accepted definition. An undirected graph is eulerian if and only if all vertices have even
degree. A directed graph is eulerian if and only if each vertex has same in- and out-degree. That
is, a graph is eulerian if and only if it has a eulerian circuit. Note that we do not require the graph
to be connected.

New Features:

22



– It is now possible to create a NullGraph in Magma, that is, a graph with no vertices. It is also
possible to test whether a graph is null, using IsNullGraph.

– The function Conversion is now available for digraphs. If G is a digraph, Conversion(G) returns
a digraph with the same vertex set as G and whose edges are the edges of G with the direction
reversed.

– If G is a graph with support S and vertex and/or edge labels L, the function UnlabelledGraph

returns a graph H with same vertex and edge set as G, with support S but without vertex and/or
edge labelling.

– The functions IsVertexLabelled and IsEdgeLabelled applied to a graph G determine if the
vertices or edges of G are labelled.

– The classical linear-time 3-connectivity algorithm from Hopcroft and Tarjan has been implemented,
with corrections of our own and from Gutwenger and Mutzel.

The function IsTriconnected determines if a graph is 3-connected. The function Splitcomponents

splits a graph G into components that can be easily reconstructed as 3-connected graphs. Finally,
the function SeparationVertices finds the cut vertices and/or the separator pairs of a graph.

– A general connectivity machinery has been put in place for graphs and digraphs. It allows to test
for vertex and edge connectivity (IsKVertexConnected and IsKEdgeConnected) and to compute
the vertex and edge connectivity of a graph (VertexConnectivity and EdgeConnectivity).

The underlying algorithms are flow-based algorithms; we have implemented two of them: the Dinic
algorithm and a push-relabel method. For more details on these algorithms see

Subsection 15.2 below. The push-relabel method is usually (much) faster than Dinic, expect
possibly in very sparse graphs with a small connectivity number. This is why the former algorithm
is the default algorithm used in all connectivity computations; users may choose Dinic by setting
an optional parameter.

– A natural extension of the flow-based machinery is the algorithm that computes a maximum match-
ing for a bipartite graph G: the function MaximumMatching returns a maximum matching of G as
a list of edges of G.

Bug Fixes:

– Several problems related to the deletion of a graph or of its vertex or edge set have been solved.

15.2 Networks (New) [HB 103]

Networks are a new Magma category with type GrphNet. Networks are defined as digraphs
whose edges are associated with a capacity; there may be parallel edges and loops. The
fundamental network flow problem is the minimum cost flow problem, that is, determining
a maximum flow at minimum cost from a specified source to a specified sink. So far we
have concentrated on the maximum flow problem: Finding the maximum flow that can
be pushed from a source to a sink subject to the capacity constraints of the edges in the
network.

Two flow-based algorithms have been implemented: The Dinic algorithm with added
heuristics from B. McKay, and the push-relabel method with heuristics mainly due to
Cherkassky and Goldberg et al . The latter usually out-performs Dinic, however Dinics

23



might be best for very sparse networks with a very small flow and whose edge capacities
are small.

The Dinic algorithm consists of two phases. The first phase constructs a layered network
which consists of the “useful” edges of the network: Those edges through which a flow can
be pushed. The second phase finds a maximal flow by constructing paths from the source
to the sink. These two phases are repeated until no new layered network can be constructed
due to the fact that there is no path of “useful” edges from the source to the sink. The
flow is then maximum.

The generic push-relabel algorithm constructs a flow by pushing the maximum possible
flow out of the source into its neighbours, and then pushing the excess flow at those vertices
into their own neighbours. This is repeated until all vertices of the network except the
source and the sink have a excess flow of zero. Of course this means that some flow might
have been pushed back into the source. Specific heuristics for zero-one networks (i.e. whose
edge capacities are either zero or one) and for general networks result in a very efficient
implementation (when compared to Dinic). Thus the push-relabel method is the default
algorithm when computing a maximum flow, although users may choose Dinic if they so
desire.

Since networks allow parallel edges, they will be represented as an adjacency list: This is
the sparse graph representation which was first introduced in the previous Magma release
V2.9. The possible existence of parallel edges actually introduces the most significant
distinction between a simple graph and a network (from the users point of view): Edges
in a network will require a unique identification, an identification which is obviously not a
necessity in a graph where multiple edges are disallowed.

The scheme chosen to identify edges in a network is to associate it with its index in
the graph’s adjacency list. This is possible since our implementation guarantees that edge
indices remain constant during the graph’s lifetime, even though vertices and edges may
have been added or removed.

In short, most basic access functions and predicates that apply to simple graphs are
also available for networks. They are not listed here, a full description can be found in the
Magma manual. The following list highlights the most significant features of networks in
Magma. Please be aware that for the time being it is not possible to label vertices and
edges in a network. This feature should be available in the next release.

New Features:

– The function EdgeIndices(u, v) returns the indices in the adjacency list of the graph of all the
directed edges from u to v. The function EdgeMultiplicity(u, v) returns the multiplicity of the
edge from u to v.

– An edge e of type GrphEdge in a network N is uniquely identified by EndVertices(e) and Index(e)

in the adjacency list of N .

– If E is the edge set of a network N , then E.i designates the edge in N with index i in N ’s adjacency
list. Note that those semantics are different from the ones applying in the simple graph case.

24



For if F is the edge set of a simple graph G, then F.i designates the ith edge in the list of edges of
G as given by Edges(G). It is likely that from the next Magma release onwards the latter semantics
will be changed so that F.i always designates the edge with index i in the adjacency list of the
graph, be it simple or not.

– If e of type GrphEdge is an edge of a network N from vertex u to vertex v, then Capacity(e)

returns the capacity associated with e while Capacity(u, v) returns the total capacity from vertex
u to vertex v.

– Incremental construction of networks by addition or deletion of vertices and edges works in a similar
fashion as in the simple digraph case, the only difference being the possibility of creating parallel
edges and the necessity to associate each edge with a capacity.

– The semantics for network equality work as follows: Let N and M be two networks. Then N eq

M if and only if Order(N) eq Order(M), if N and M have same support and the total capacity
from vertex u to vertex v in N is equal to the total capacity from vertex u to vertex v in M for all
ordered pairs of vertices. That is, it is possible that N equals M without it being necessary that
they have the same number of edges from u to v for any given two vertices u and v.

– The semantics for IsSubgraph(N, M) are similar. M is a subgraph of N if and only if the total
capacity from vertex u to vertex v in M is no greater than the total capacity from vertex u to vertex
v in N .

– Given two vertices s and t in a network N , MaximumFlow(s, t) returns the value of the maximum
flow in N from s to t. Given two sequences S and T of vertices in a network N , MaximumFlow(S,
T) returns the value of the maximum flow in N from the vertices in S to the vertices in T .

– Let e of type GrphEdge be an edge in a network N from vertex u to vertex v. After a maximum
flow computation in N , Flow(e) returns the flow carried by the edge e, while Flow(u, v) returns
the total flow vertex u to vertex v. If no maximum flow computation has been performed on N then
both functions return zero.

– Given two vertices s and t in a network N , MinimumCut(s, t) returns the minimum cut in N
corresponding to the maximum flow from s to t in N . Similarly, given two sequences S and T
of vertices in a network N , MinimumCut(S, T) returns the minimum cut corresponding to the
maximum flow from the vertices in S to the vertices in T .

15.3 Incidence Structures and Designs [HB 104]

New Features:

– Now a pRank function is available for incidence structures (it was formerly restricted to finite planes
only).

Changes:

– The existing brute force t-balance test is quite expensive, especially for large t. We have implemented
a new test, also using brute force but that performs much better. However it has a drawback as
it might run out of memory space. For this reason the choice is left to the user as to which
implementation to use for the t-balance test.

The functions where this choice is made possible are IsDesign, IsSteiner, IsBalanced, Design as
well as the Design<> constructor. The choice is made using the optional parameter Al which can
be set to the values

25



– "NoOrbits" This is the existing implementation of the brute force test and is the default
setting.

– "Orbits" This is the existing implementation of a test that uses the orbits of t-sets under the
automorphism group of the incidence structure under consideration. This is much faster than
"NoOrbits" for some cases, but slower for others.

– "FastBalanceTest" This is the new implementation of the brute force test. Its usage is
recommended as it significantly outperforms the two previous tests. These later tests should
only be used in the case where using "FastBalanceTest" would not be possible due to shortage
of memory space. Typically this would happen for large t and large incidence structures.

– Testing whether an incidence structure is a near linear space has been significantly improved by the
implementation of a specialised and very fast 2-balance test.

Bug Fixes:

– A bug in IsHadamardEquivalent that caused the function to give a wrong answer has been fixed.

– Bugs in AutomorphismGroup and IsIsomorphic for designs that caused these functions to hang
have been fixed.

15.4 Finite Planes [HB 105]

Changes:

– Testing whether an incidence structure is a projective or affine plane has been rewritten using a
different set of axioms and implementing a specialised and very fast 2-balance test. This results
in a significant performance improvement and affects all functions creating planes or testing if an
incidence structure is a plane.

Bug Fixes:

– Bugs in AutomorphismGroup and IsIsomorphic for planes that caused these functions to hang have
been fixed.

16 Coding Theory

16.1 Linear Codes over Finite Fields [HB 107]

Changes:

– Verbose output has for the best known linear codes, with flag BestCode, has been re-written to be
more user friendly. It now outputs construction steps in a point-wise fashion, rather than using
indenting. The new output is especially helpful for complex code constructions.

New Features:

– A new database for codes over GF (4) contains constructions of best codes up to length 100. The
database is over 98% complete, the first missing code appearing at length 92. Many of the codes
constructed in this database are vast improvements on the previously known bounds for best codes
over GF (4).

26



16.2 Linear Codes over Finite Rings [HB 108]

Changes:

– Codes over integer residue rings are now classified by the total number of codewords they contain.
Previously they were classified by the number of generators, which was not invariant for equivalent
codes.

New Features:

– Magma now supports error correcting codes over Galois rings. Constructions include CyclicCode,
as well as facilities to factorize xn − 1. Important structural calculations are available such as the
CompleteWeightEnumerator and the Hamming WeightDistribution.

– Magma now has special functionality for codes over Z4, the ring of integers modulo 4. A host of
specific constructions include KerdockCode, PreparataCode, ReedMullerCode, GoethalsCode, and
more. The optimized calculations of LeeWeightDistribution and EuclideanWeightDistribution

are also included. Derived binary codes can be obtained, including those from the GrayMap.

27


