Bibliography

BE99a
Hans Ulrich Besche and Bettina Eick.
Construction of finite groups.
J. Symbolic Comput., 27(4):387--404, 1999.

BE99b
Hans Ulrich Besche and Bettina Eick.
The groups of order at most 1000 except 512 and 768.
J. Symbolic Comput., 27(4):405--413, 1999.

BE01
Hans Ulrich Besche and Bettina Eick.
The groups of order q sp n.p.
Comm. Algebra, 29(4):1759--1772, 2001.

BEO01
Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien.
The groups of order at most 2000.
Electron. Res. Announc. Amer. Math. Soc., 7:1--4 (electronic), 2001.

BP00
Sergey Bratus and Igor Pak.
Fast constructive recognition of a black box group isomorphic to Sn or An using Goldbach's conjecture.
J. Symbolic Comp., 29:33--57, 2000.

CH08
J.J. Cannon and D.F. Holt.
The transitive permutation groups of degree 32.
Experiment. Math., 17:307--314, 2008.

CQRD11
Hannah J. Coutts, Martyn Quick, and Colva M. Roney-Dougal.
The primitive permutation groups of degree less than 4096.
Communications in Algebra, 39:10:3526--3546, 2011.

DE05
Heiko Dietrich and Bettina Eick.
On the groups of cubefree order.
J. Algebra, 292:122--137, 2005.

DEP22
Heiko Dietrich, Bettina Eick, and Xueyu Pan.
Groups whose orders factorise into at most four primes.
J. Symbolic Comput., 108:23--40, 2022.

DT03
Nathan M. Dunfield and William P. Thurston.
The virtual Haken conjecture; experiments and examples.
Geometry & Topology, 7:399--441, 2003.

HP89
D.F. Holt and W. Plesken.
Perfect Groups.
Oxford University Press, 1989.

HR19
D. Holt and G. Royle.
A census of small transitive groups and vertex-transitive graphs.
J. Symb. Comput., 2019.
https://doi.org/10.1016/j.jsc.2019.06.006.

Hul05
Alexander Hulpke.
Constructing transitive permutation groups.
J. Symbolic Comput., 39(1):1--30, 2005.

Kir09
M. Kirschmer.
Finite symplectic matrix groups.
Dissertation, RWTH Aachen, 2009.
available at http://www.math.rwth-aachen.de/ Markus.Kirschmer/symplectic/thesis.pdf.

MNVL04
E.A. O'Brien M.F. Newman and M.R. Vaughan-Lee.
Groups and nilpotent Lie rings whose order is the sixth power of a prime.
J. Algebra, 278:383--401, 2004.

Neb96
G. Nebe.
Finite subgroups of (GL)n((Q)) for 25≤n≤31.
Comm. Algebra, 24(7):2341--2397, 1996.

Neb98
G. Nebe.
Finite quaternionic matrix groups.
Represent. Theory, 2:106--223, 1998.

NP95
G. Nebe and W. Plesken.
Finite rational matrix groups.
Mem. Amer. Math. Soc., 116(556), 1995.

O'B90
E.A. O'Brien.
The p-group generation algorithm.
J. Symbolic Comput., 9:677--698, 1990.

O'B91
E.A. O'Brien.
The Groups of Order 256.
J. Algebra, 143:219--235, 1991.

OVL05
E.A. O'Brien and M.R. Vaughan-Lee.
The groups with order p7 for odd prime p.
J. Algebra, 2005.

Ple85
Wilhelm Plesken.
Finite unimodular groups of prime degree and circulants.
J. Algebra, 97:286--312, 1985.

PP77
Wilhelm Plesken and Michael Pohst.
On maximal finite irreducible subgroups of GL(n,Z). Parts I and II.
Math. Comp., 31:536--576, 1977.

PP80
Wilhelm Plesken and Michael Pohst.
On maximal finite irreducible subgroups of GL(n,Z). Parts III-V.
Math. Comp., 34(149):245--301, 1980.

RD05
Colva M. Roney-Dougal.
The primitive permutation groups of degree less than 2500.
J. Algebra, 292(1):154--183, 2005.

RDU03
Colva M. Roney-Dougal and William R. Unger.
The affine primitive permutation groups of degree less than 1000.
J. Symbolic Comp., 35:421--439, 2003.

Sho92
Mark W. Short.
The Primitive Soluble Permutation Groups of Degree less than 256, volume 1519 of Lecture Notes in Math.
Springer, Berlin and Heidelberg, 1992.

Sim70
C.C. Sims.
Computational methods in the study of permutation groups.
In J. Leech, editor, Computational problems in abstract algebra, pages 169--183. Oxford - Pergamon, 1970.

Sou94
Bernd Souvignier.
Irreducible finite integral matrix groups of degree 8 and 10.
Math. Comp., 63:335--350, 1994.

V2.28, 13 July 2023