Bibliography
- BE99a
-
Hans Ulrich Besche and Bettina Eick.
Construction of finite groups.
J. Symbolic Comput., 27(4):387--404, 1999.
- BE99b
-
Hans Ulrich Besche and Bettina Eick.
The groups of order at most 1000 except 512 and 768.
J. Symbolic Comput., 27(4):405--413, 1999.
- BE01
-
Hans Ulrich Besche and Bettina Eick.
The groups of order q sp n.p.
Comm. Algebra, 29(4):1759--1772, 2001.
- BEO01
-
Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien.
The groups of order at most 2000.
Electron. Res. Announc. Amer. Math. Soc., 7:1--4 (electronic), 2001.
- BP00
-
Sergey Bratus and Igor Pak.
Fast constructive recognition of a black box group isomorphic to Sn or An using Goldbach's conjecture.
J. Symbolic Comp., 29:33--57, 2000.
- CH08
-
J.J. Cannon and D.F. Holt.
The transitive permutation groups of degree 32.
Experiment. Math., 17:307--314, 2008.
- CQRD11
-
Hannah J. Coutts, Martyn Quick, and Colva M. Roney-Dougal.
The primitive permutation groups of degree less than 4096.
Communications in Algebra, 39:10:3526--3546, 2011.
- DE05
-
Heiko Dietrich and Bettina Eick.
On the groups of cubefree order.
J. Algebra, 292:122--137, 2005.
- DEP22
-
Heiko Dietrich, Bettina Eick, and Xueyu Pan.
Groups whose orders factorise into at most four primes.
J. Symbolic Comput., 108:23--40, 2022.
- DT03
-
Nathan M. Dunfield and William P. Thurston.
The virtual Haken conjecture; experiments and examples.
Geometry & Topology, 7:399--441, 2003.
- HP89
-
D.F. Holt and W. Plesken.
Perfect Groups.
Oxford University Press, 1989.
- HR19
-
D. Holt and G. Royle.
A census of small transitive groups and vertex-transitive graphs.
J. Symb. Comput., 2019.
https://doi.org/10.1016/j.jsc.2019.06.006.
- Hul05
-
Alexander Hulpke.
Constructing transitive permutation groups.
J. Symbolic Comput., 39(1):1--30, 2005.
- Kir09
-
M. Kirschmer.
Finite symplectic matrix groups.
Dissertation, RWTH Aachen, 2009.
available at http://www.math.rwth-aachen.de/ Markus.Kirschmer/symplectic/thesis.pdf.
- MNVL04
-
E.A. O'Brien M.F. Newman and M.R. Vaughan-Lee.
Groups and nilpotent Lie rings whose order is the sixth power of a prime.
J. Algebra, 278:383--401, 2004.
- Neb96
-
G. Nebe.
Finite subgroups of (GL)n((Q)) for 25≤n≤31.
Comm. Algebra, 24(7):2341--2397, 1996.
- Neb98
-
G. Nebe.
Finite quaternionic matrix groups.
Represent. Theory, 2:106--223, 1998.
- NP95
-
G. Nebe and W. Plesken.
Finite rational matrix groups.
Mem. Amer. Math. Soc., 116(556), 1995.
- O'B90
-
E.A. O'Brien.
The p-group generation algorithm.
J. Symbolic Comput., 9:677--698, 1990.
- O'B91
-
E.A. O'Brien.
The Groups of Order 256.
J. Algebra, 143:219--235, 1991.
- OVL05
-
E.A. O'Brien and M.R. Vaughan-Lee.
The groups with order p7 for odd prime p.
J. Algebra, 2005.
- Ple85
-
Wilhelm Plesken.
Finite unimodular groups of prime degree and circulants.
J. Algebra, 97:286--312, 1985.
- PP77
-
Wilhelm Plesken and Michael Pohst.
On maximal finite irreducible subgroups of GL(n,Z). Parts I and II.
Math. Comp., 31:536--576, 1977.
- PP80
-
Wilhelm Plesken and Michael Pohst.
On maximal finite irreducible subgroups of GL(n,Z). Parts III-V.
Math. Comp., 34(149):245--301, 1980.
- RD05
-
Colva M. Roney-Dougal.
The primitive permutation groups of degree less than 2500.
J. Algebra, 292(1):154--183, 2005.
- RDU03
-
Colva M. Roney-Dougal and William R. Unger.
The affine primitive permutation groups of degree less than 1000.
J. Symbolic Comp., 35:421--439, 2003.
- Sho92
-
Mark W. Short.
The Primitive Soluble Permutation Groups of Degree less than 256, volume 1519 of Lecture Notes in Math.
Springer, Berlin and Heidelberg, 1992.
- Sim70
-
C.C. Sims.
Computational methods in the study of permutation groups.
In J. Leech, editor, Computational problems in abstract algebra, pages 169--183. Oxford - Pergamon, 1970.
- Sou94
-
Bernd Souvignier.
Irreducible finite integral matrix groups of degree 8 and 10.
Math. Comp., 63:335--350, 1994.
V2.28, 13 July 2023