Bibliography
- BF12
-
J.-F. Biasse and C. Fieker.
Improved techniques for computing the ideal class group and a system of fundamental units in number fields.
In Proceedings of the Tenth Algorithmic Number Theory Symposium, University of California, San Diego, 2012.
- DEF11
-
A. S. Detinko, B. Eick, and D. L. Flannery.
Computing with matrix groups over infinite fields.
In LMS Lecture Note Series, volume 387, pages 256--270, 2011.
- DF06
-
A. S. Detinko and D. L. Flannery.
Computing in nilpotent matrix groups.
LMS J. Comput. Math., 9:104--134 (electronic), 2006.
- DF08
-
A. S. Detinko and D. L. Flannery.
Algorithms for computing with nilpotent matrix groups over infinite domains.
J. Symbolic Comput., 43:8--26, 2008.
- DF09
-
A. S. Detinko and D. L. Flannery.
On deciding finiteness of matrix groups.
J. Symbolic Comput., 44:1037--1043, 2009.
- DFO09
-
A. S. Detinko, D. L. Flannery, and E. A. O'Brien.
Deciding finiteness of matrix groups in positive characteristic.
J. Algebra, 322:4151--4160, 2009.
- DFO11
-
A. S. Detinko, D. L. Flannery, and E. A. O'Brien.
Algorithms for the Tits alternative and related problems.
J. Algebra, 344:397--406, 2011.
- DFO13a
-
A. S. Detinko, D. L. Flannery, and E. A. O'Brien.
Algorithms for linear groups of finite rank.
J. Algebra, 393:187--196, 2013.
- DFO13b
-
A. S. Detinko, D. L. Flannery, and E. A. O'Brien.
Recognizing finite matrix groups over infinite fields.
J. Symbolic Comput., 50:100--109, 2013.
- Ros10
-
T. Rossmann.
Irreducibility testing of finite nilpotent linear groups.
J. Algebra, 324:1114--1124, 2010.
- Ros11
-
T. Rossmann.
Primitivity testing of finite nilpotent linear groups.
LMS JCM, 14:87--98, 2011.
V2.28, 13 July 2023