Bibliography

AMPS10
S. Ambrose, S.H. Murray, C.E. Praeger, and C. Schneider.
Constructive membership testing in black-box classical groups.
In Proceedings of The Third International Congress on Mathematical Software, number 6327 in Lecture Notes in Computer Science, pages 54--57, Basel, 2010. Springer.

Asc84
M. Aschbacher.
On the maximal subgroups of the finite classical groups.
Invent. Math, 76:469--514, 1984.

BHLGO15
H. Baccent127aaccent127arnhielm, Derek Holt, C.R. Leedham-Green, and E.A. O'Brien.
A practical model for computation with matrix groups.
J. Symbolic Comput., 68(68):27--60, 2015.

Bra00
J.N. Bray.
An improved method of finding the centralizer of an involution.
Arch. Math. (Basel), 74(1):241--245, 2000.

CMT04
Arjeh M. Cohen, Scott H. Murray, and D. E. Taylor.
Computing in groups of Lie type.
Math. Comp., 73(247):1477--1498, 2004.

Cos09
E. Costi.
Constructive membership testing in classical groups.
PhD thesis, Queen Mary, University of London, 2009.

CT19
Arjeh M. Cohen and D.E. Taylor.
Row reduction for twisted groups of Lie type.
Preprint, 2019.

DLGO15
Heiko Dietrich, C.R. Leedham-Green, and E.A. O'Brien.
Effective black-box constructive recognition of classical groups.
J. Algebra, 460--492:421, 2015.

DLLGO13
Heiko Dietrich, Frank Lübeck, C.R. Leedham-Green, and E.A. O'Brien.
Constructive recognition of classical groups in even characteristic.
J. Algebra, 227--255:391, 2013.

GH97
S.P. Glasby and R.B. Howlett.
Writing representations over minimal fields.
Comm. Algebra, 25(6):1703--1711, 1997.

GLGO05
S.P. Glasby, C.R. Leedham-Green, and E.A. O'Brien.
Writing projective representations over subfields.
J. Algebra, 295:51--61, 2005.

HLGOR96a
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Computing decompositions for modules with respect to a normal subgroup.
J. Algebra, 184:818--838, 1996.

HLGOR96b
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Testing matrix groups for primitivity.
J. Algebra, 184:795--817, 1996.

HRT01
R. B. Howlett, L. J. Rylands, and D. E. Taylor.
Matrix generators for exceptional groups of Lie type.
J. Symbolic Comput., 31(4):429--445, 2001.

LG01
Charles R. Leedham-Green.
The computational matrix group project.
In Groups and computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 229--247. de Gruyter, Berlin, 2001.

LGO97a
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor products of matrix groups.
Internat. J. Algebra Comput., 7:541--559, 1997.

LGO97b
C.R. Leedham-Green and E.A. O'Brien.
Tensor Products are Projective Geometries.
J. Algebra, 189:514--528, 1997.

LGO02
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor-induced matrix groups.
J. Algebra, 253:14--30, 2002.

LGO09
C.R. Leedham-Green and E.A. O'Brien.
Constructive recognition of classical groups in odd characteristic.
J. Algebra, 322:833--881, 2009.

LGO20
C.R. Leedham-Green and E.A. O'Brien.
Presentations on standard generators for classical groups.
J. Algebra, 545:324--389, 2020.

LO16
Martin Liebeck and E.A. O'Brien.
Recognition of finite exceptional groups of Lie type.
Trans. Amer. Math. Soc., 368:6189--6226, 2016.

Nie05
Alice C. Niemeyer.
Constructive recognition of normalisers of small extra-special matrix groups.
Internat. J. Algebra Comput., 15:367--394, 2005.

NS06
Max Neunhöffer and Ákos Seress.
A data structure for a uniform approach to computations with finite groups.
In ISSAC 2006, pages 254--261. ACM, New York, 2006.

O'B06
E.A. O'Brien.
Towards effective algorithms for linear groups.
In Finite Geometries, Groups and Computation, pages 163--190. De Gruyer, 2006.

O'B11
E.A. O'Brien.
Algorithms for matrix groups.
In Groups St Andrews (Bath), volume 388 of LMS Lecture Notes, pages 297--323. Cambridge University Press, 2011.

V2.28, 13 July 2023