Bibliography
- AMPS10
-
S. Ambrose, S.H. Murray, C.E. Praeger, and C. Schneider.
Constructive membership testing in black-box classical groups.
In Proceedings of The Third International Congress on Mathematical Software, number 6327 in Lecture Notes in Computer Science,
pages 54--57, Basel, 2010. Springer.
- Asc84
-
M. Aschbacher.
On the maximal subgroups of the finite classical groups.
Invent. Math, 76:469--514, 1984.
- BHLGO15
-
H. Baccent127aaccent127arnhielm, Derek Holt, C.R. Leedham-Green, and
E.A. O'Brien.
A practical model for computation with matrix groups.
J. Symbolic Comput., 68(68):27--60, 2015.
- Bra00
-
J.N. Bray.
An improved method of finding the centralizer of an involution.
Arch. Math. (Basel), 74(1):241--245, 2000.
- CMT04
-
Arjeh M. Cohen, Scott H. Murray, and D. E. Taylor.
Computing in groups of Lie type.
Math. Comp., 73(247):1477--1498, 2004.
- Cos09
-
E. Costi.
Constructive membership testing in classical groups.
PhD thesis, Queen Mary, University of London, 2009.
- CT19
-
Arjeh M. Cohen and D.E. Taylor.
Row reduction for twisted groups of Lie type.
Preprint, 2019.
- DLGO15
-
Heiko Dietrich, C.R. Leedham-Green, and E.A. O'Brien.
Effective black-box constructive recognition of classical groups.
J. Algebra, 460--492:421, 2015.
- DLLGO13
-
Heiko Dietrich, Frank Lübeck, C.R. Leedham-Green, and E.A. O'Brien.
Constructive recognition of classical groups in even characteristic.
J. Algebra, 227--255:391, 2013.
- GH97
-
S.P. Glasby and R.B. Howlett.
Writing representations over minimal fields.
Comm. Algebra, 25(6):1703--1711, 1997.
- GLGO05
-
S.P. Glasby, C.R. Leedham-Green, and E.A. O'Brien.
Writing projective representations over subfields.
J. Algebra, 295:51--61, 2005.
- HLGOR96a
-
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Computing decompositions for modules with respect to a normal subgroup.
J. Algebra, 184:818--838, 1996.
- HLGOR96b
-
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Testing matrix groups for primitivity.
J. Algebra, 184:795--817, 1996.
- HRT01
-
R. B. Howlett, L. J. Rylands, and D. E. Taylor.
Matrix generators for exceptional groups of Lie type.
J. Symbolic Comput., 31(4):429--445, 2001.
- LG01
-
Charles R. Leedham-Green.
The computational matrix group project.
In Groups and computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 229--247. de Gruyter,
Berlin, 2001.
- LGO97a
-
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor products of matrix groups.
Internat. J. Algebra Comput., 7:541--559, 1997.
- LGO97b
-
C.R. Leedham-Green and E.A. O'Brien.
Tensor Products are Projective Geometries.
J. Algebra, 189:514--528, 1997.
- LGO02
-
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor-induced matrix groups.
J. Algebra, 253:14--30, 2002.
- LGO09
-
C.R. Leedham-Green and E.A. O'Brien.
Constructive recognition of classical groups in odd characteristic.
J. Algebra, 322:833--881, 2009.
- LGO20
-
C.R. Leedham-Green and E.A. O'Brien.
Presentations on standard generators for classical groups.
J. Algebra, 545:324--389, 2020.
- LO16
-
Martin Liebeck and E.A. O'Brien.
Recognition of finite exceptional groups of Lie type.
Trans. Amer. Math. Soc., 368:6189--6226, 2016.
- Nie05
-
Alice C. Niemeyer.
Constructive recognition of normalisers of small extra-special matrix groups.
Internat. J. Algebra Comput., 15:367--394, 2005.
- NS06
-
Max Neunhöffer and Ákos Seress.
A data structure for a uniform approach to computations with finite groups.
In ISSAC 2006, pages 254--261. ACM, New York, 2006.
- O'B06
-
E.A. O'Brien.
Towards effective algorithms for linear groups.
In Finite Geometries, Groups and Computation, pages 163--190. De Gruyer, 2006.
- O'B11
-
E.A. O'Brien.
Algorithms for matrix groups.
In Groups St Andrews (Bath), volume 388 of LMS Lecture Notes, pages 297--323. Cambridge University Press, 2011.
V2.28, 13 July 2023