Bibliography

Bri03
John R. Britnell.
Cycle index methods for matrix groups over finite fields.
DPhil Thesis, University of Oxford, 2003.

But76
Gregory Butler.
The Schreier Algorithm for Matrix Groups.
In Proceedings of SYMSAC '76, pages 167--170, 1976.

CCH01
J.J. Cannon, B. Cox, and D.F. Holt.
Computing the subgroups of a permutation group.
J. Symb. Comp., 31:149--161, 2001.

CH03
J.J. Cannon and D.F. Holt.
Automorphism group computation and isomorphism testing in finite groups.
J. Symbolic Comp., 35(3):241--267, 2003.

CHSS03
J.J. Cannon, D.F. Holt, M. Slattery, and A.K. Steel.
Computing subgroups of low index in a finite group.
2003.

CLG97
Frank Celler and Charles R. Leedham-Green.
Calculating the Order of an Invertible Matrix.
In Larry Finkelstein and William M. Kantor, editors, Groups and Computation II, volume 28 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 55--60. AMS, 1997.

CLGM+95
Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A. O'Brien.
Generating random elements of a finite group.
Comm. Algebra, 23(13):4931--4948, 1995.

Cou11
Hannah J. Coutts.
Topics in computational group theory: primitive permutation groups and matrix group normalisers.
PhD thesis, University of St Andrews, 2011.

ELGO02
Bettina Eick, C.R. Leedham-Green, and E.A. O'Brien.
Constructing automorphism groups of a p-groups.
Comm. Algebra, 30:2271--2295, 2002.

Fra18
Giovanni De Franceschi.
Centralizers and conjugacy classes in finite classical groups.
PhD thesis, University of Auckland, 2018.

Fra20
Giovanni De Franceschi.
Centralizers and conjugacy classes in finite classical groups.
arXiv:2008.12651v1, math.GR:69, 2020.

Ful97
Jason Fulman.
Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms, and Cycle Indices.
PhD Thesis, Harvard University, 1997.

GLO17
Samuel Gonshaw, Martin W. Liebeck, and E. A. O'Brien.
Unipotent class representatives for finite classical groups.
J. Group Theory, 20(3):505--525, 2017.

KL90
Peter Kleidman and Martin Liebeck.
The Subgroup Structure of the Finite Classical Groups, volume 129 of London Math. Soc. Lecture Note Ser.
CUP, Cambridge, 1990.

KP02
J. Kuzmanovich and A. Pavlichenkov.
Finite groups of matrices whose entries are integers.
Amer. Math. Monthly, 109(2):173--186, 2002.

LGO02
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor-induced matrix groups.
J. Algebra, 253:14--30, 2002.

LGPS91
C.R. Leedham-Green, C.E. Praeger, and L.H. Soicher.
Computing with group homomorphisms.
J. Symbolic Comp., 12(4/5):527--532, 1991.

Mil69
John Milnor.
On isometries of inner product spaces.
Invent. Math., 8:83--97, 1969.

MN89
M. Mecky and J. Neubüser.
Some remarks on the computation of conjugacy classes of soluble groups.
Bull. Austral, Math. Soc., 40(2):281--292, 1989.

MO95
Scott H. Murray and E. A. O'Brien.
Selecting base points for the Schreier-Sims algorithm for matrix groups.
J. Symbolic Comp., 6:577--584, 1995.

O'B90
E.A. O'Brien.
The p-group generation algorithm.
J. Symbolic Comput., 9:677--698, 1990.

RD04
Colva M. Roney-Dougal.
Conjugacy of subgroups of the general linear group.
Experiment. Math., 13:151--163, 2004.

Sch00
Ruth Schwingel.
Two matrix group algorithms with applications to computing the automorphism group of a finite p-group.
PhD thesis, Queen Mary and Westfield College, University of London, 2000.

Tay92
Donald E. Taylor.
The geometry of the classical groups, volume 9 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, 1992.

Ung
W.R. Unger.
Computing chief series of a large permutation group.
In preparation.

Ung06a
W.R. Unger.
Computing the character table of a finite group.
J. Symbolic Comp., 41(8):847--862, 2006.

Ung06b
W.R. Unger.
Computing the solvable radical of a permutation group.
J. Algebra, 300(1):305--315, 2006.

Wal63
G. E. Wall.
On the conjugacy classes in the unitary, symplectic and orthogonal groups.
J. Aust. Math. Soc., 3:1--62, 1963.

V2.28, 13 July 2023