Bibliography
- Bri03
-
John R. Britnell.
Cycle index methods for matrix groups over finite fields.
DPhil Thesis, University of Oxford, 2003.
- But76
-
Gregory Butler.
The Schreier Algorithm for Matrix Groups.
In Proceedings of SYMSAC '76, pages 167--170, 1976.
- CCH01
-
J.J. Cannon, B. Cox, and D.F. Holt.
Computing the subgroups of a permutation group.
J. Symb. Comp., 31:149--161, 2001.
- CH03
-
J.J. Cannon and D.F. Holt.
Automorphism group computation and isomorphism testing in finite groups.
J. Symbolic Comp., 35(3):241--267, 2003.
- CHSS03
-
J.J. Cannon, D.F. Holt, M. Slattery, and A.K. Steel.
Computing subgroups of low index in a finite group.
2003.
- CLG97
-
Frank Celler and Charles R. Leedham-Green.
Calculating the Order of an Invertible Matrix.
In Larry Finkelstein and William M. Kantor, editors, Groups and Computation II, volume 28 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 55--60. AMS, 1997.
- CLGM+95
-
Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and
E. A. O'Brien.
Generating random elements of a finite group.
Comm. Algebra, 23(13):4931--4948, 1995.
- Cou11
-
Hannah J. Coutts.
Topics in computational group theory: primitive permutation groups and matrix group normalisers.
PhD thesis, University of St Andrews, 2011.
- ELGO02
-
Bettina Eick, C.R. Leedham-Green, and E.A. O'Brien.
Constructing automorphism groups of a p-groups.
Comm. Algebra, 30:2271--2295, 2002.
- Fra18
-
Giovanni De Franceschi.
Centralizers and conjugacy classes in finite classical groups.
PhD thesis, University of Auckland, 2018.
- Fra20
-
Giovanni De Franceschi.
Centralizers and conjugacy classes in finite classical groups.
arXiv:2008.12651v1, math.GR:69, 2020.
- Ful97
-
Jason Fulman.
Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms, and Cycle Indices.
PhD Thesis, Harvard University, 1997.
- GLO17
-
Samuel Gonshaw, Martin W. Liebeck, and E. A. O'Brien.
Unipotent class representatives for finite classical groups.
J. Group Theory, 20(3):505--525, 2017.
- KL90
-
Peter Kleidman and Martin Liebeck.
The Subgroup Structure of the Finite Classical Groups, volume 129 of London Math. Soc. Lecture Note Ser.
CUP, Cambridge, 1990.
- KP02
-
J. Kuzmanovich and A. Pavlichenkov.
Finite groups of matrices whose entries are integers.
Amer. Math. Monthly, 109(2):173--186, 2002.
- LGO02
-
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor-induced matrix groups.
J. Algebra, 253:14--30, 2002.
- LGPS91
-
C.R. Leedham-Green, C.E. Praeger, and L.H. Soicher.
Computing with group homomorphisms.
J. Symbolic Comp., 12(4/5):527--532, 1991.
- Mil69
-
John Milnor.
On isometries of inner product spaces.
Invent. Math., 8:83--97, 1969.
- MN89
-
M. Mecky and J. Neubüser.
Some remarks on the computation of conjugacy classes of soluble groups.
Bull. Austral, Math. Soc., 40(2):281--292, 1989.
- MO95
-
Scott H. Murray and E. A. O'Brien.
Selecting base points for the Schreier-Sims algorithm for matrix groups.
J. Symbolic Comp., 6:577--584, 1995.
- O'B90
-
E.A. O'Brien.
The p-group generation algorithm.
J. Symbolic Comput., 9:677--698, 1990.
- RD04
-
Colva M. Roney-Dougal.
Conjugacy of subgroups of the general linear group.
Experiment. Math., 13:151--163, 2004.
- Sch00
-
Ruth Schwingel.
Two matrix group algorithms with applications to computing the automorphism group of a finite p-group.
PhD thesis, Queen Mary and Westfield College, University of London, 2000.
- Tay92
-
Donald E. Taylor.
The geometry of the classical groups, volume 9 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, 1992.
- Ung
-
W.R. Unger.
Computing chief series of a large permutation group.
In preparation.
- Ung06a
-
W.R. Unger.
Computing the character table of a finite group.
J. Symbolic Comp., 41(8):847--862, 2006.
- Ung06b
-
W.R. Unger.
Computing the solvable radical of a permutation group.
J. Algebra, 300(1):305--315, 2006.
- Wal63
-
G. E. Wall.
On the conjugacy classes in the unitary, symplectic and orthogonal groups.
J. Aust. Math. Soc., 3:1--62, 1963.
V2.28, 13 July 2023