Bibliography
- BBFCV15
-
J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva.
Permutation decoding of Z2Z4-linear codes.
Des. Codes and Cryptogr., 76(2):269--277, 2015.
- BV16a
-
R. Barrolleta and M. Villanueva.
Partial permutation decoding for binary linear and Z4-linear Hadamard codes.
Submitted to Designs, Codes and Cryptography, arXiv:1512.01839, 2016.
- BV16b
-
R. Barrolleta and M. Villanueva.
PD-sets for Z4-linear codes: Hadamard and Kerdock codes.
Proceedings of the IEEE International Symposium on Information Theory, 2016.
- BZ01
-
N.S. Babu and K.H. Zimmermann.
Decoding of linear codes over Galois rings.
IEEE Trans. on Information Theory, 47(4):1599--1603, 2001.
- FCPV08
-
C. Fernández-Córdoba, J. Pujol, and M. Villanueva.
On rank and kernel of Z4-linear codes, pages 46--55.
Number 5228 in Lecture Notes in Computer Science. 2008.
- FCPV10
-
C. Fernández-Córdoba, J. Pujol, and M. Villanueva.
Z2Z4-linear codes: rank and kernel.
Designs, Codes and Cryptography, 56(1):43--59, 2010.
- GV98
-
M. Greferath and U. Velbinger.
Efficient decoding of Zpk-linear codes.
IEEE Trans. on Information Theory, 44:1288--1291, 1998.
- HKC+94
-
A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé.
The Z4-linearity of kerdock, preparata, goethals and related codes.
IEEE Trans. on Information Theory, 40:301--319, 1994.
- MS78
-
F.J. MacWilliams and N.J.A. Sloane.
The Theory of Error-Correcting Codes.
North Holland, New York, 1978.
- VZP15
-
M. Villanueva, F. Zeng, and J. Pujol.
Efficient representation of binary nonlinear codes: constructions and minimum distance computation.
Designs, Codes and Cryptography, 76(1):3--21, 2015.
- Wan97
-
Zhe-Xian Wan.
Quaternary Codes, volume 8 of Series on Applied Mathematics.
World Scientific, Singapore, 1997.
V2.28, 13 July 2023