Bibliography

BBFCV15
J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva.
Permutation decoding of Z2Z4-linear codes.
Des. Codes and Cryptogr., 76(2):269--277, 2015.

BV16a
R. Barrolleta and M. Villanueva.
Partial permutation decoding for binary linear and Z4-linear Hadamard codes.
Submitted to Designs, Codes and Cryptography, arXiv:1512.01839, 2016.

BV16b
R. Barrolleta and M. Villanueva.
PD-sets for Z4-linear codes: Hadamard and Kerdock codes.
Proceedings of the IEEE International Symposium on Information Theory, 2016.

BZ01
N.S. Babu and K.H. Zimmermann.
Decoding of linear codes over Galois rings.
IEEE Trans. on Information Theory, 47(4):1599--1603, 2001.

FCPV08
C. Fernández-Córdoba, J. Pujol, and M. Villanueva.
On rank and kernel of Z4-linear codes, pages 46--55.
Number 5228 in Lecture Notes in Computer Science. 2008.

FCPV10
C. Fernández-Córdoba, J. Pujol, and M. Villanueva.
Z2Z4-linear codes: rank and kernel.
Designs, Codes and Cryptography, 56(1):43--59, 2010.

GV98
M. Greferath and U. Velbinger.
Efficient decoding of Zpk-linear codes.
IEEE Trans. on Information Theory, 44:1288--1291, 1998.

HKC+94
A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé.
The Z4-linearity of kerdock, preparata, goethals and related codes.
IEEE Trans. on Information Theory, 40:301--319, 1994.

MS78
F.J. MacWilliams and N.J.A. Sloane.
The Theory of Error-Correcting Codes.
North Holland, New York, 1978.

VZP15
M. Villanueva, F. Zeng, and J. Pujol.
Efficient representation of binary nonlinear codes: constructions and minimum distance computation.
Designs, Codes and Cryptography, 76(1):3--21, 2015.

Wan97
Zhe-Xian Wan.
Quaternary Codes, volume 8 of Series on Applied Mathematics.
World Scientific, Singapore, 1997.

V2.28, 13 July 2023