Bibliography

BP99
Alexander Barvinok and James E. Pommersheim.
An algorithmic theory of lattice points in polyhedra.
In New perspectives in algebraic combinatorics (Berkeley, CA, 1996--97), volume 38 of Math. Sci. Res. Inst. Publ., pages 91--147. Cambridge Univ. Press, Cambridge, 1999.

DLHTY04
Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida.
Effective lattice point counting in rational convex polytopes.
J. Symbolic Comput., 38(4):1273--1302, 2004.

GK13
Roland Grinis and Alexander M. Kasprzyk.
Normal forms of convex lattice polytopes.
Preprint; available at http://arxiv.org/abs/1301.6641, January 2013.

KS04
Maximilian Kreuzer and Harald Skarke.
PALP, A package for analyzing lattice polytopes with applications to toric geometry.
Computer Phys. Comm., 157:87--106, 2004.

McK
B. D. McKay.
nauty User's Guide (Version 2.2).
http://cs.anu.edu.au/~bdm/nauty/nug.pdf.

McK81
B. D. McKay.
Practical Graph Isomorphism.
Congressus Numerantium, 30:45--87, 1981.

V2.28, 13 July 2023