The sub constructor allows subplanes of a projective or affine plane to be created. For classical planes, the SubfieldSubplane function is also provided.
Given a plane P, construct the subplane of P generated by the points specified by L, where L is a list of one or more items of the following types:The set S of points defined by the list L must include a quadrangle if P is a projective plane and three non-collinear points if P is an affine plane. The function returns the smallest subplane of P containing S.
- (a)
- A point of P;
- (b)
- A set or sequence of points of P;
- (c)
- A subplane of P;
- (d)
- A set or sequence of subplanes of P.
The plane obtained from the classical plane P by taking only those points of P which have all coordinates lying in F, where F must be a subfield of Field(P).
> K<w> := GF(4); > P, V, L := FiniteProjectivePlane(K); > S := sub< P | [ V | [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, w, 1] ] >; > S: Maximal; Projective Plane of order 2 Points: {@ ( 1 : 0 : 0 ), ( 0 : 1 : 0 ), ( 0 : 0 : 1 ), ( 1 : w : 0 ), ( 1 : 0 : 1 ), ( 1 : w : 1 ), ( 0 : 1 : w^2 ) @} Lines: {( 0 : 1 : 0 ), ( 0 : 0 : 1 ), ( 0 : 1 : w^2 )}, {( 1 : 0 : 0 ), ( 0 : 0 : 1 ), ( 1 : 0 : 1 )}, {( 1 : 0 : 0 ), ( 0 : 1 : 0 ), ( 1 : w : 0 )}, {( 1 : 0 : 0 ), ( 1 : w : 1 ), ( 0 : 1 : w^2 )}, {( 0 : 1 : 0 ), ( 1 : 0 : 1 ), ( 1 : w : 1 )}, {( 0 : 0 : 1 ), ( 1 : w : 0 ), ( 1 : w : 1 )}, {( 1 : w : 0 ), ( 1 : 0 : 1 ), ( 0 : 1 : w^2 )}We next form the subplane of AG2(4) over GF(2).
> A := FiniteAffinePlane(4); > S := SubfieldSubplane(A, GF(2)); > S: Maximal; Affine Plane AG(2, 2) > S subset A; true