Properties

AuxiliaryLevel(M) : ModSS -> RngIntElt
The level of the module M, where the auxiliary level of SupersingularModule(N,p) is, by definition, N.
BaseRing(M) : ModSS -> Rng
The base ring of the module M. (Currently this is always Z.)
Degree(P) : ModSSElt -> RngElt
The sum of the coefficients of the module element P, where P is written with respect the basis of the ambient space of the parent of M.
Dimension(M) : ModSS -> RngIntElt
The dimension of the module M.
Eltseq(P) : ModSSElt -> SeqEnum
A sequence of integers that defines the module element P.
Level(M) : ModSS -> RngIntElt
The level of the module M, where the level of SupersingularModule(N,p) is, by definition, Np.
ModularEquation(M) : ModSS -> RngMPolElt
The equation of X0(N) that we use when using the Mestre method to compute with the module M of supersingular points.
Prime(M) : ModSS -> RngIntElt
The prime of the module M, where the prime of SupersingularModule(N,p) is, by definition, p.

Example ModSS_Properties (H144E4)

> M := SupersingularModule(3,11);
> AuxiliaryLevel(M);
11
> BaseRing(M);
Integer Ring
> Degree(M.1+7*M.2);
8
> Dimension(M);
2
> Eltseq(M.1+7*M.2);
[ 1, 7 ]
> Level(M);
33
> Prime(M);
3
> M := SupersingularModule(11,3); M;
Supersingular module associated to X_0(3)/GF(11) of dimension 4
> ModularEquation(M);
x*y + 8
V2.28, 13 July 2023