The level of the module M, where the auxiliary level of
SupersingularModule(N,p) is, by
definition, N.
The base ring of the module M. (Currently this is always Z.)
The sum of the coefficients of the module element P, where P is written
with respect the basis of the ambient space of the parent
of M.
The dimension of the module M.
A sequence of integers that defines the module element P.
The level of the module M, where the level of
SupersingularModule(N,p) is, by
definition, Np.
The equation of X0(N) that we use when using
the Mestre method to compute with
the module M of supersingular points.
The prime of the module M, where the prime of
SupersingularModule(N,p) is, by
definition, p.
> M := SupersingularModule(3,11);
> AuxiliaryLevel(M);
11
> BaseRing(M);
Integer Ring
> Degree(M.1+7*M.2);
8
> Dimension(M);
2
> Eltseq(M.1+7*M.2);
[ 1, 7 ]
> Level(M);
33
> Prime(M);
3
> M := SupersingularModule(11,3); M;
Supersingular module associated to X_0(3)/GF(11) of dimension 4
> ModularEquation(M);
x*y + 8
V2.28, 13 July 2023