Bibliography

BC84
A. Bremner and J. W. S. Cassels.
On the equation Y2=X(X2 + p).
Math. Comp., 42(165):257--264, 1984.

BC04
W. Bosma and J. Cannon, editors.
Discovering Mathematics with Magma.
Springer-Verlag, Heidelberg, 2004.

Bos00
Wieb Bosma, editor.
ANTS IV, volume 1838 of LNCS. Springer-Verlag, 2000.

Bru02
N. R. Bruin.
Chabauty methods and covering techniques applied to generalized Fermat equations, volume 133 of CWI Tract.
Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam, 2002.
Dissertation, University of Leiden, Leiden, 1999.

Bru03
Nils Bruin.
Chabauty methods using elliptic curves.
J. reine angew. Math., 562:27--49, 2003.

Bru04
Nils Bruin.
Some ternary Diophantine equations of signature (n, n, 2).
In Bosma and Cannon [BC04].

BS10
Nils Bruin and Michael Stoll.
The Mordell-Weil sieve: Proving non-existence of rational points on curves.
LMS J. Comput. Math., 13:272--306, 2010.

Cas66
J. W. S. Cassels.
Diophantine equations with special reference to elliptic curves.
J. London Math. Soc., 41:150--158, 1966.

CFO+
J.E. Cremona, T.A Fisher, C. O'Neil, D. Simon, and M Stoll.
Explicit n-Descent On Elliptic Curves, III. Algorithms.
ArXiv preprint. http://arxiv.org/abs/1107.3516.

CFO+08
J. E. Cremona, T. A. Fisher, C. O'Neil, D. Simon, and M. Stoll.
Explicit n-descent on elliptic curves. I. Algebra.
J. Reine Angew. Math., 615:121--155, 2008.

CFO+09
J.E. Cremona, T.A Fisher, C. O'Neil, D. Simon, and M Stoll.
Explicit n-Descent On Elliptic Curves, II. Geometry.
J. reine angew. Math., 632:63--84, 2009.

CFS10
J.E. Cremona, T.A Fisher, and M Stoll.
Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves.
Algebra & Number Theory, 4(6):763--820, 2010.

CM12
B. Creutz and R.L. Miller.
Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula.
J.Algebra, 372:673--701, 2012.

Coh93
Henri Cohen.
A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics.
Springer, Berlin--Heidelberg--New York, 1993.

Cre99
John Cremona.
Reduction of binary cubic and quartic forms.
LMS JCM, 2:62--92, 1999.

Cre01
John Cremona.
Classical invariants and 2-descent on elliptic curves.
J. Symbolic Comp., 31:71--87, 2001.

Cre10
Brendan Creutz.
Explicit second p-descents on elliptic curves.
PhD Thesis, Jacobs University Bremen, 2010.

Elk00
N. Elkies.
Rational Points Near Curves and Small Nonzero |x3 - y2| via Lattice Reduction.
In Bosma [Bos00], pages 33--63.

Fis
Tom Fisher.
Higher descents on an elliptic curve with a rational 2-torsion point.
preprint.

Fis00
Tom Fisher.
On 5 and 7 descents for elliptic curves.
PhD thesis, University of Cambridge, 2000.

Fis01
Tom Fisher.
Some examples of 5 and 7 descent for elliptic curves over Q.
J. Eur. Math. Soc., 3(Issue 2):169--201, 2001.

Fis08
Tom Fisher.
Finding rational points on elliptic curves using 6-descent and 12-descent.
J. Algebra, 320(2):853--884, 2008.

FK02
Claus Fieker and David R. Kohel, editors.
ANTS V, volume 2369 of LNCS. Springer-Verlag, 2002.

GZ86
Gross and Zagier.
Heegner Points and Derivatives of L-series.
Invent. Math., 84:225--320, 1986.

Har08
D. Harvey.
Efficient computation of p-adic heights.
LMS J. Comput. Math., 11:40--59, 2008.

Kra81
K. Kramer.
Arithmetic of elliptic curves upon quadratic extension.
Trans. Amer. Math. Soc., 264(1):121--135, 1981.

MSS96
J. R. Merriman, S. Siksek, and N. P. Smart.
Explicit 4-descents on an elliptic curve.
Acta Arith., 77(4):385--404, 1996.

MST06
B. Mazur, W. Stein, and J. Tate.
Computation of p-adic heights and log convergence.
Documenta Mathematica, Extra:577--614, 2006.

MT91
B. Mazur and J. Tate.
The p-adic sigma function.
Duke Math Journal, 62(3):663--688, 1991.

Sik95
Samir Siksek.
Infinite descent on elliptic curves.
Rocky Mountain J. Math., 25(4):1501--1538, 1995.

Sil86
J. Silverman.
The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1986.

SS04
Edward F. Schaefer and Michael Stoll.
How to do a p-descent on an elliptic curve.
Trans. Amer. Math. Soc., 356(3):1209--1231 (electronic), 2004.

ST94
R. J. Stroeker and N. Tzanakis.
Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.
Acta Arith., 67:177--196, 1994.

ST96
R. J. Stroeker and Tzanakis T.
Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, the quartic case.
Acta Arith., 75:165--190, 1996.

SW02
W. A. Stein and M. Watkins.
A New Database of Elliptic Curves---First Report.
In Fieker and Kohel [FK02].

Wat02
M. Watkins.
Computing the modular degree of an elliptic curve.
Experimental Mathematics, 11(4):487--502, 2002.

V2.28, 13 July 2023