Let R=K[V]G be the invariant ring of the finite group G over the field K. If G is a finite matrix group in the non-modular case or a permutation group (in either the modular or non-modular case) then the Molien series of G yields the Hilbert Series of R.
The Molien series of G, returned as an element of the rational function field Z(t). If G is a permutation group, the Molien series always exists and equals the Hilbert series of the invariant ring of G for any field. If G is a matrix group, the characteristic of the coefficient field of G must be coprime with the order of G.
The Molien series of a permutation group G, or more precisely, an approximation to it, as a Laurent series with n known coefficients. In contrast to the MolienSeries function above, approximations can be computed for far larger groups.
> K<z> := CyclotomicField(5); > w := -z^3 - z^2; > G := MatrixGroup<3,K | > [1,0,-w, 0,0,-1, 0,1,-w], > [-1,-1,w, -w,0,w, -w,0,1]>; > M<t> := MolienSeries(G); > M; (-t^8 - t^7 + t^5 + t^4 + t^3 - t - 1)/(t^11 + t^10 - t^9 - 2*t^8 - t^7 + t^4 + 2*t^3 + t^2 - t - 1) > P<u> := PowerSeriesRing(IntegerRing()); > P ! M; 1 + u^2 + u^4 + 2*u^6 + 2*u^8 + 3*u^10 + 4*u^12 + 4*u^14 + u^15 + 5*u^16 + u^17 + 6*u^18 + u^19 + O(u^20) > Coefficients(P ! M); [ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1 ] > time [#InvariantsOfDegree(G, i): i in [0 .. 19]]; [ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1 ]