Bibliography

CM93
David H. Collingwood and William M. McGovern.
Nilpotent orbits in semisimple Lie algebras.
Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.

CM09
Arjeh M. Cohen and Scott H. Murray.
An algorithm for Lang's Theorem.
Journal of Algebra, 322:675--702, 2009.

CR09
Arjeh M. Cohen and Dan Roozemond.
Computing Chevalley bases in small characteristics.
J. Algebra, 322(3):703--721, August 2009.

CSUW01
Arjeh M. Cohen, Anja Steinbach, Rosane Ushirobira, and David Wales.
Lie algebras generated by extremal elements.
J. Algebra, 236(1):122--154, 2001.

dG00
W.A. de Graaf.
Lie Algebras: Theory and Algorithms.
Number 56 in North-Holland Mathematical Library. Elsevier, 2000.

dG05
W. A. de Graaf.
Classification of solvable Lie algebras.
Experimental Mathematics, 14(1):15--25, 2005.

dG07
W. A. de Graaf.
Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2.
Journal of Algebra, 309(2):640--653, 2007.

dG11
Willem A. de Graaf.
Constructing semisimple subalgebras of semisimple Lie algebras.
J. Algebra, 325:416--430, 2011.

Hog82
G. M. D. Hogeweij.
Almost-classical Lie algebras. I, II.
Nederl. Akad. Wetensch. Indag. Math., 44(4):441--452, 453--460, 1982.

Jac62
N. Jacobson.
Lie algebras.
Interscience Tracts in Pure and Applied Mathematics, No. 10. Interscience Publishers New York-London, 1962.

Kos66
B. Kostant.
Groups over Z.
In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 90--98. Amer. Math. Soc., Providence, R.I., 1966.

Roo10
D.A. Roozemond.
Algorithms for Lie algebras of algebraic groups.
PhD thesis, Technische Universiteit Eindhoven, 2010.

Roo11
Dan Roozemond.
On Lie algebras generated by few extremal elements.
J. Algebra, 348:462--476, 2011.

SF88
Helmut Strade and Rolf Farnsteiner.
Modular Lie algebras and their representations, volume 116 of Monographs and Textbooks in Pure and Applied Mathematics.
Marcel Dekker Inc., New York, 1988.

Str04
Helmut Strade.
Simple Lie algebras over fields of positive characteristic. I, volume 38 of de Gruyter Expositions in Mathematics.
Walter de Gruyter & Co., Berlin, 2004.
Structure theory.

ZK90
E.I. Zel'manov and A.I. Kostrikin.
A theorem on sandwich algebras.
Trudy Mat. Inst. Steklov., 183:106--111, 225, 1990.
Translated in Proc. Steklov Inst. Math. 1991, no. 4, 121--126, Galois theory, rings, algebraic groups and their applications (Russian).

V2.28, 13 July 2023