Returns the tensor describing the Jordan triple product.
JordanSpinAlgebra(F) : Any -> AlgGen
Returns the special Jordan algebra of spin type for given symmetric form.
Jordan algebras have suggestive analogues of
commutative associative algebras, but experimenting shows serious
differences.
> F := IdentityMatrix(Rationals(),2);
> J := JordanSpinAlgebra(F);
> T := Tensor(J);
> R := AsMatrices( T, 2,0);
> R[1]; // Is J.1 the identity?
[1 0 0]
[0 1 0]
[0 0 1]
> J.2*J.2 eq J.1; // J.2^2=1?
true
> J.2*J.3 eq 0; // Yet J.2 is a zero-divisor.
true
> e := (1/2)*(J.1+J.2);
> e^2 eq e; // An idempotent of J?
true
Pierce decompositions in Jordan algebras have the usual 0 and 1 eigenspaces
but an additional 1/2-eigenspace emerges as well.
> Re := (1/2)*(R[1]+R[2]);
> Eigenvalues(Re);
{ <1, 1>, <1/2, 1>, <0, 1> }
ExceptionalJordanCSA(K) : Fld -> AlgGen
The exception central simple Jordan algebra over the given octonions.
If a field is supplied instead then the split octonion algebra over the
field is used.
In characteristic not 2 or 3, the exceptional central
simple Jordan algebra can be used to construct
the exceptional Lie algebra of type F
4.
> J := ExceptionalJordanCSA(Rationals());
> T := Tensor(J);
> T := ChangeTensorCategory(T, HomotopismCategory(3));
> D := DerivationAlgebra(T);
> _, D2 := Induce(D, 2); // Represent D on U2.
> F4 := D2*D2; // Commutator.
> SemisimpleType(F4);
F4
> F4; // F4 represented on a 27-dim module.
Matrix Lie Algebra of degree 27 over Rational Field
V2.28, 13 July 2023