Clifford algebras are associative structure constant algebras and therefore the intrinsics in chapters on structure constant algebras and associative algebras may be used with Clifford algebra arguments.
The homogeneous component of degree k of the Clifford algebra element v.
> F := GF(5); > C,V,f := CliffordAlgebra(IdentityMatrix(F,4)); > v := (f(V.1)*f(V.2)+3*f(V.2))*(f(V.3)+f(V.4)); > AsPolynomial(HomogeneousComponent(v,2)); 3*e1*e3 + 3*e2*e4
The even subalgebra C_ + of the Clifford algebra C. This is the algebra of fixed points of the main involution. The second return value of this function is the canonical embedding of C_ + in C.
> F<a,b> := RationalFunctionField(Rationals(),2); > Q := DiagonalMatrix(F,[1,-a,-b]); > C,V,f := CliffordAlgebra(Q); > E, h := EvenSubalgebra(C); > i := E.2; > j := E.3; > i^2; (a 0 0 0) > j^2; (b 0 0 0) > i*j eq -j*i; true
The centre of the Clifford algebra C. The second return value is the embedding in C.
The following examples illustrate the fact that over a finite field F a Clifford algebra C of a non-degenerate quadratic form Q is either a simple algebra or the direct sum of two simple algebras. Furthermore, the same is true of its even subalgebra E. Let V denote the quadratic space of Q.
> F := GF(3); > Q := StandardQuadraticForm(6,F); > C,V,f := CliffordAlgebra(Q); > WittIndex(V); 3 > IsSimple(C); true > #Centre(C); 3
The even subalgebra E of C is the direct sum of two simple ideals E(1 - z) and E(1 + z), where z2 = 1 and z anticommutes with every element of V.
> E,h := EvenSubalgebra(C); > IsSimple(E); false > #MinimalIdeals(E); 2 > Z := Centre(E); Z; Associative Algebra of dimension 2 with base ring GF(3) > #{ z : z in Z | IsUnit(z) }; 4 > exists(z){ z : z in Z | z^2 eq One(E) and > forall{ v : v in V | f(v)*h(z) eq - h(z)*f(v) } }; true > E1 := ideal< E | 1-z >; > IsSimple(E1); true > E2 := ideal< E | 1+z >; > IsSimple(E2); true
> F := GF(3); > Q := StandardQuadraticForm(6,F : Minus); > C,V,f := CliffordAlgebra(Q); > WittIndex(V); 2 > IsSimple(C); true > #Centre(C); 3 > E := EvenSubalgebra(C); > IsSimple(E); true > Z := Centre(E); Z; Associative Algebra of dimension 2 with base ring GF(3) > #{ z : z in Z | IsUnit(z) }; 8
> F := GF(3); > Q := StandardQuadraticForm(5,F); > C,V,f := CliffordAlgebra(Q); > WittIndex(V); 2 > IsSimple(C); false > Z := Centre(C); Z; Associative Algebra of dimension 2 with base ring GF(3) > #{ z : z in Z | IsUnit(z) }; 4 > E := EvenSubalgebra(C); > IsSimple(E); trueIn this example the Clifford algebra is the direct sum of two simple ideals. But it is possible that the Clifford algebra of a scalar multiple of Q is a simple algebra over a quadratic extension of the base field.
> C,V,f := CliffordAlgebra(2*Q); > IsSimple(C); true > #Z,#{ z : z in Centre(C) | IsUnit(z) }; 9 8The non-zero elements of Z are invertible and hence Z is a field, namely GF(9).