About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Up
Contents
Index
Search
Expand all
Collapse all
Introduction to Riemann Surfaces
Example
RieSrf_rie-srf-verbose (H124E1)
Creation Functions
Riemann Surfaces over Number Fields
RiemannSurface(f) : RngMPolElt -> RieSrf
RiemannSurface(f,sigma) : RngMPolElt, PlcNumElt -> RieSrf
Example
RieSrf_riesrf-ex-1 (H124E2)
Example
RieSrf_riesrf-ex-2 (H124E3)
Superelliptic Riemann Surfaces
RiemannSurface(p,m) : RngUPolElt, RngIntElt -> RieSrf
RiemannSurface(L,m) : SeqEnum[FldComElt], RngIntElt -> RieSrf
Example
RieSrf_riesrf-ex-2 (H124E4)
Properties of Riemann Surfaces
Basic Invariants
BasePoint(X) : RieSrf -> RieSrfPt
Genus(X) : RieSrf -> RngIntElt
Degree(X) : RieSrf -> RngIntElt
Precision(X) : RieSrf -> RngIntElt
Embedding(X) : RieSrf -> PlcNumElt
BigPeriodMatrix(X) : RieSrf -> Mtrx
SmallPeriodMatrix(X) : RieSrf -> Mtrx
FunctionField(X) : RieSrf -> FldFun
Example
RieSrf_invariants (H124E5)
Fundamental Group
DiscriminantPoints(f) : RngMPolElt -> SeqEnum[FldComElt]
BranchPoints(X) : RieSrf -> Tup
RamificationPoints(X) : RieSrf -> SeqEnum[RieSrfPt]
SingularPoints(X) : RieSrf -> SeqEnum
FundamentalGroup(P) : SeqEnum[FldComElt] -> FldComElt, SeqEnum[FldComElt], SeqEnum[CPath], SeqEnum[SeqEnum[RngIntElt]]
FundamentalGroup(X) : RieSrf -> SeqEnum[CChain]
MonodromyRepresentation(X): RieSrf -> SeqEnum
Example
RieSrf_riesrf-ex-1 (H124E6)
Basis for Period Matrix
HolomorphicDifferentials(X) : RieSrf -> Tup
Example
RieSrf_riesrf-ex-1 (H124E7)
Example
RieSrf_riesrf-ex-1 (H124E8)
HomologyBasis(L) : SeqEnum[GrpPermElt] -> SeqEnum[SeqEnum[RngIntElt]], Mtrx, Mtrx
HomologyBasis(X) : RieSrf -> SeqEnum[SeqEnum[RngIntElt]], Mtrx, Mtrx
Example
RieSrf_homology-basis1 (H124E9)
Example
RieSrf_homology-basis2 (H124E10)
Points on Riemann Surfaces
Points
IsCoercible(X, S) : RieSrf, Any -> BoolElt, .
Point(X, S): RieSrf, SeqEnum -> RieSrfPt
Point(X, S) : RieSrf, Tup -> RieSrfPt
Example
RieSrf_rie-points (H124E11)
Access Functions
RiemannSurface(P) : RieSrfPt -> RieSrf
Representation(P) : RieSrfPt -> Tup
Coordinates(P) : RieSrfPt -> SeqEnum[FldComElt]
RamificationIndex(P) : RieSrfPt -> RngIntElt
PointsOverDiscriminantPoint(X, k) : RieSrf, RngIntElt -> SeqEnum[RieSrfPt]
RandomPoint(X) : RieSrf -> RieSrfPt
Example
RieSrf_create-pts-1 (H124E12)
Divisors on Riemann Surfaces
Divisor(S,V) : SeqEnum[RieSrfPt], SeqEnum[RngIntElt] -> DivRieSrfElt
ZeroDivisor(X) : RieSrfElt -> DivRieSrfElt
RiemannSurface(D) : DivRieSrfElt -> RieSrf
Support(D) : DivRieSrfElt -> SeqEnum[RieSrfPt], SeqEnum[RngIntElt]
Degree(D) : DivRieSrfElt -> RngIntElt
RandomDivisor(X,d) : RieSrf, RngIntElt -> RieSrfDivElt
Abel--Jacobi Map
AbelJacobi(P) : RieSrfPt -> Mtrx
AbelJacobi(P, Q) : RieSrfPt, RieSrfPt -> Mtrx
AbelJacobi(D, P) : DivRieSrfElt, RieSrfPt -> Mtrx
Example
RieSrf_abel-jacobi-sup (H124E13)
Example
RieSrf_abel-jacobi-gen-1 (H124E14)
Example
RieSrf_abel-jacobi-gen-2 (H124E15)
Period Matrix Functions
Example
RieSrf_iso-small-pm-1 (H124E16)
Bibliography
Up
Contents
Index
Search
V2.28, 28 February 2025