- PluriCanonicalBasis
- Plurigenus
- PlurigenusOfDesingularization
- Plus
- COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- ConformalSpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- HasIntersectionPropertyPlus(G) : GrpPerm -> BoolElt
- OmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- PGOPlus(arguments)
- PSOPlus(arguments)
- ProjectiveOmegaPlus(arguments)
- SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
- pMap
- pmap
- pmat
- pmat-basis
- pmat-construct
- pmat-elementary
- pmat-ops
- pmat-predicates
- pMatrix
- pMatrixRing
- pMaximal
- pMaximalOrder
- pMinimal
- pMinimalWeierstrassModel
- pMinimise
- pMinus1
- pMultiplicator
- pMultiplicatorRank
- pNormal
- pNormalModel
- Point
- PointSet(E, m) : CrvEll, Map -> SetPtEll
- E(m) : CrvEll, Map -> SetPtEll
- E(L) : CrvEll, Rng -> SetPtEll
- ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
- BaseLocus(D) : DivSchElt -> Sch
- BasePoint(G, i) : GrpMat, RngIntElt -> Elt
- BasePoint(G, i) : GrpPerm, RngIntElt -> Elt
- BasePoint(X) : RieSrf -> RieSrfPt
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
- EquivalentPoint(x) : SpcHypElt -> SpcHypElt, GrpPSL2Elt
- FormalPoint(P) : Pt -> Pt
- GenericPoint(X) : Sch -> Pt
- HasIntegralPoint(P) : TorPol -> BoolElt
- HasNonsingularPoint(X) : Sch -> BoolElt,Pt
- HasPoint(f,q,v) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt, SeqEnum
- HasRationalPoint(C) : CrvCon -> BoolElt, Pt
- HeegnerPoint(E : parameters) : CrvEll -> BoolElt, PtEll
- HeegnerPoint(C : parameters) : CrvHyp -> BoolElt, PtHyp
- IsBasePointFree(L) : LinearSys -> BoolElt
- IsDoublePoint(p) : Pt -> BoolElt
- IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
- IsPoint(C, S) : CrvHyp, SeqEnum -> BoolElt, PtHyp
- IsPoint(N,p) : NwtnPgon,Tup -> BoolElt
- IsPoint(H, x) : SetPtEll, RngElt -> BoolElt, PtEll
- IsPoint(H, S) : SetPtEll, [ RngElt ] -> BoolElt, PtEll
- IsPoint(K, S) : SrfKum, [RngElt] -> BoolElt, SrfKumPt
- IsPointRegular(D) : IncNsp -> BoolElt, RngIntElt
- IsPointTransitive(D) : Inc -> BoolElt
- IsPointTransitive(P) : Plane -> BoolElt
- JacobianPoint(J, D) : JacHyp, DivCrvElt -> JacHypPt
- LiftPoint(P, n) : Pt, RngIntElt -> Pt
- Point(D, i) : Inc, RngIntElt -> IncPt
- Point(X, S): RieSrf, SeqEnum -> RieSrfPt
- Point(X, S) : RieSrf, Tup -> RieSrfPt
- Point(r,n,Q) : RngIntElt, RngIntElt, SeqEnum -> GRPtS
- PointDegree(D, p) : Inc, IncPt -> RngIntElt
- PointDegrees(D) : Inc -> [ RngIntElt ]
- PointGraph(D) : Inc -> Grph
- PointGraph(D) : Inc -> GrphUnd
- PointGraph(P) : Plane -> GrphUnd;
- PointGroup(D) : Inc -> GrpPerm, GSet
- PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup
- PointSearch(S,H : parameters) : Sch[FldRat], RngIntElt -> SeqEnum
- PointSet(D) : Inc -> IncPtSet
- PointSet(P) : Plane -> PlanePtSet
- PointsOverDiscriminantPoint(X, k) : RieSrf, RngIntElt -> SeqEnum[RieSrfPt]
- ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
- RandomPoint(X) : RieSrf -> RieSrfPt
- RationalPoint(C) : CrvCon -> Pt
- RepresentativePoint(P) : PlcCrv -> Pt
- SingularPoint(dsd) : DesingData -> Sch
- X(L) : Sch,Rng -> SetPt
V2.28, 13 July 2023