- norm
- norm-equation
- norm-equations
- norm-group
- norm-space
- norm-trace
- norm_equation
- NormAbs
- Normal
- A`IsNormal : FldAb -> Bool
- AbelianNormalQuotient(G, H) : GrpPerm, GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- AffineNormalForm(P) : TorPol -> SeqEnum, GrpPermElt
- CentralizerOfNormalSubgroup(G, H) : GrpPerm, GrpPerm -> GrpPerm
- ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- InnerNormal(C) : TorCon -> TorLatElt
- IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
- IsNormal(A) : FldAb -> BoolElt
- IsNormal(F) : FldAlg -> BoolElt
- IsNormal(a) : FldFinElt -> BoolElt
- IsNormal(a, E) : FldFinElt -> BoolElt
- IsNormal(F) : FldNum -> BoolElt
- IsNormal(G, H) : GrpFin, GrpFin -> BoolElt
- IsNormal(G, H) : GrpFP, GrpFP -> BoolElt
- IsNormal(G, H) : GrpGPC, GrpGPC -> BoolElt
- IsNormal(G, H) : GrpMat, GrpMat -> BoolElt
- IsNormal(G, H) : GrpPC, GrpPC -> BoolElt
- IsNormal(G, H) : GrpPerm, GrpPerm -> BoolElt
- IsNormal(K) : RngPad -> BoolElt
- IsNormal(K, k) : RngPad, RngPad -> BoolElt
- IsNormal(S) : Srfc -> BoolElt
- IspNormal(C, p) : CrvHyp, RngIntElt -> BoolElt
- LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt
- LeftNormalForm(~u: parameters) : GrpBrdElt ->
- LeftNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt
- LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
- MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
- MinimalNormalSubgroup(G) : GrpPC -> GrpPC
- MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC
- MinimalNormalSubgroups(G) : GrpPC -> [GrpPC]
- MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]
- NormalClosureMonteCarlo(G, H ) : GrpMat, GrpMat -> GrpMat
- NormalComplements(G, N) : GrpPC, GrpPC -> SeqEnum
- NormalComplements(G, H, N) : GrpPC, GrpPC, GrpPC -> SeqEnum
- NormalCone(P,F) : TorPol, TorPol -> TorCon
- NormalEdgeCones(P) : TorPol -> [TorCon]
- NormalElement(F) : FldFin -> FldFinElt
- NormalElement(F, E) : FldFin, FldFin -> FldFinElt
- NormalFan(F,C) : TorFan,TorCon -> TorFan,Map
- NormalFan(P) : TorPol -> TorFan
- NormalForm(f, I) : AlgFrElt, AlgFr -> AlgFrElt
- NormalForm(f, S) : AlgFrElt, [ AlgFrElt ] -> AlgFrElt
- NormalForm(f, S) : ModMPolElt, ModMPol -> ModMPolElt
- NormalForm(f, I) : RngMPolElt, RngMPol -> RngMPolElt
- NormalForm(f, S) : RngMPolElt, [ RngMPolElt ] -> RngMPolElt, [ RngMPolElt ]
- NormalForm(f, I) : RngMPolLocElt, RngMPolLoc -> RngMPolLocElt
- NormalForm(P) : TorPol -> SeqEnum, GrpPermElt
- NormalFormOfHypersurfaceSingularity(f) : RngMPol -> BoolElt, RngMPolElt, MonStgElt, Map
- NormalLattice(G) : GrpFin -> NormalLattice
- NormalLattice(G) : GrpPC -> SubGrpLat
- NormalLattice(G) : GrpPerm -> SubGrpLat
- NormalNumber(C) : GRCrvS -> RngIntElt
- NormalSubfields(A) : FldAb -> []
- NormalSubgroups(G) : GrpFin -> [ Rec ]
- NormalSubgroups(G) : GrpPC -> SeqEnum
- NormalSubgroups(G) : GrpPerm -> [ Rec ]
- NormalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- ParametrizeOrdinaryCurve(C) : Crv -> MapSch
- RandomElementOfNormalClosure(G, N): Grp -> GrpElt
- RightNormalForm(~u: parameters) : GrpBrdElt ->
- RightNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt
- SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- SplittingField(F) : FldAlg -> FldAlg, SeqEnum
- SplittingField(F) : FldNum -> FldNum, SeqEnum
- TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
- TwoElementNormal(I) : RngOrdIdl -> RngOrdElt, RngOrdElt, RngIntElt
- H ^ G : GrpFin -> GrpFin
- H ^ G : GrpFin, GrpFin -> GrpFin
- H ^ G : GrpFP, GrpFP -> GrpFP
- H ^ G : GrpGPC, GrpGPC -> GrpGPC
- H ^ G : GrpMat -> GrpMat
- H ^ G : GrpMat, GrpMat -> GrpMat
- H ^ G : GrpPC, GrpPC -> GrpPC
- H ^ G : GrpPerm, GrpPerm -> GrpPerm
- pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
V2.28, 13 July 2023