- maximal
- maximal-order
- maximal_orders
- MaximalAbelianSubfield
- MaximalCommutativeSubalgebra
- MaximalExtension
- MaximalExtension(~M, N) : ModGrp, ModGrp ->
- MaximalExtension(M, N) : ModGrp, ModGrp -> ModGrp
- MaximalExtension(M, N, E, r) : ModGrp, ModGrp, ModTupFld, map -> ModGrp
- MaximalIdeals
- MaximalIdempotent
- MaximalIncreasingSequence
- MaximalIncreasingSequences
- MaximalIntegerSolution
- MaximalIntegralLattice
- MaximalLeftIdeals
- MaximalNormalSubgroup
- MaximalNormSplitting
- MaximalNumberOfCosets
- MaximalOrder
- MaximalOrderFinite
- MaximalOrderInfinite
- MaximalOrders
- MaximalOvergroup
- MaximalParabolics
- MaximalPartition
- MaximalRightIdeals
- Maximals
- maximals
- MaximalSolution
- MaximalSubfields
- MaximalSubgroups
- MaximalSubgroups(G) : GrpAb -> [GrpAb]
- MaximalSubgroups(G) : GrpPC -> [GrpPC]
- MaximalSubgroups(G) : MonStgElt -> SeqEnum[MonStgElt]
- MaximalSubgroups(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
- MaximalSubgroups(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
- MaximalSubgroups(G,N: parameters) : GrpMat, GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
- MaximalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- MaximalSubgroups(G,N: parameters) : GrpPerm, GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- MaximalSubgroups(e) : SubGrpLatElt -> { SubGrpLatElt }
- MaximalSubgroupsData
V2.28, 13 July 2023