- extended
- extended-examples
- extended-rootdtm
- ExtendedCategory
- ExtendedCohomologyClass
- ExtendedGcd
- ExtendedGcd (A, B) : SnuElement, SnuElement -> SnuElement, SnuElement, SnuElement, SnuElement, SnuElement, SnuElement
- ExtendedGcd (A, B) : SpElement, SpElement -> SpElement, SpElement, SpElement, SpElement, SpElement, SpElement
- ExtendedGcd (A, B) : SuElement, SuElement -> SuElement, SuElement, SuElement, SuElement, SuElement, SuElement
- ExtendedGreatestCommonDivisor
- XGCD(x, y) : FldXPadElt, FldXPadElt -> FldXPadElt, FldXPadElt, FldXPadElt
- Xgcd(x, y) : FldXPadElt, FldXPadElt -> FldXPadElt, FldXPadElt, FldXPadElt
- ExtendedGreatestCommonDivisor(x, y) : FldXPadElt, FldXPadElt -> FldXPadElt, FldXPadElt, FldXPadElt
- ExtendedGreatestCommonDivisor(m, n) : RngIntElt, RngIntElt -> RngIntElt, RngIntElt, RngIntElt
- ExtendedGreatestCommonDivisor(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt, RngUPolElt, RngUPolElt
- ExtendedGreatestCommonDivisor(v, w) : RngValElt, RngValElt -> RngValElt, RngValElt, RngValElt
- ExtendedGreatestCommonDivisor(s) : [RngIntElt] -> RngIntElt, [RngIntElt]
- ExtendedGreatestCommonLeftDivisor
- ExtendedGreatestCommonRightDivisor
- ExtendedLeastCommonLeftMultiple
- ExtendedOneCocycle
- ExtendedPerfectCodeZ4
- ExtendedSp
- ExtendedSpecialUnitaryGroup
- ExtendedSU
- ExtendedSymplecticGroup
- ExtendedType
- ExtendedUnitGroup
- ExtendField
- ExtendGaloisCocycle
- ExtendGeneratorList
- ExtendGeodesic
- ExtendIsometry
- Extends
- Extension
- AbelianExtension(D, U) : DivFunElt, GrpAb -> FldFunAb
- AbelianExtension(K) : FldAlg -> FldAb
- AbelianExtension(psi) : GrpHecke -> FldAb
- AbelianExtension(I) : RngOrdIdl -> FldAb
- AbelianExtension(I, P) : RngOrdIdl, [RngIntElt] -> FldAb
- AbelianpExtension(m, p) : Map, RngIntElt -> FldAb
- AbsoluteTotallyRamifiedExtension(R) : RngPad -> RngPad, Map
- AffineSplitExtension(M: parameters) : ModGrp -> Grp, Map, Map, Map
- ArtinSchreierExtension(c,a,b) : FldFin, FldFin, FldFin -> FldFun
- AsExtensionOf(O1, O2) : RngFunOrd, RngFunOrd -> RngFunOrd
- AsExtensionOf(O, P) : RngOrd, RngOrd -> RngOrd
- AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
- AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
- CentralExtension(G, U, A) : GrpPC, GrpPC, AlgMatElt -> GrpPC
- CentralExtensionProcess(G, U) : GrpPC, GrpPC -> Proc
- ConstantFieldExtension(F, E) : FldFun, Rng -> FldFun, Map
- ConstantFieldExtension(F, C) : RngDiff, Fld -> RngDiff, Map
- ConstantFieldExtension(R, C) : RngDiffOp,Fld -> RngDiffOp, Map
- CyclotomicUnramifiedExtension(R, f) : FldPad, RngIntElt -> FldPad
- DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
- DifferentialFieldExtension(L) : RngDiffOpElt -> RngDiff
- DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff
- ExactExtension(C) : ModCpx -> ModCpx
- ExponentialFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
- Extension(GrpPerm, CM, s) : Cat, ModCoho, SeqEnum -> GrpPerm, HomGrp, Map
- Extension(G, H, f) : GrpPC, GrpPC, [Map] -> GrpPC
- Extension(G, H, f, t) : GrpPC, GrpPC, [Map], [GrpPCElt] -> GrpPC
- Extension(phi, I): Map, RngMPol -> RngMPol
- Extension(CM, s) : ModCoho, SeqEnum -> Grp, HomGrp, Map
- Extension(M, H) : ModGrp, GrpPC -> GrpPC
- Extension(M, H, t) : ModGrp, GrpPC, [ModGrpElt] -> GrpPC
- Extension(M, N, e, r) : ModGrp, ModGrp, ModTupFldElt, Map -> ModGrp, ModMatGrpElt, ModMatGrpElt
- Extension(P, Q) : Process -> GrpFinFP
- Extension(P, Q) : Process -> GrpFP
- Extension(I, U) : RngMPol, [ RngIntElt ] -> RngMPol, Map
- ExtensionClasses(D, Q) : DB, MonStgElt -> SetEnum
- ExtensionExponents(D, Q, p) : DB, MonStgElt, RngIntElt -> SetEnum
- ExtensionField<F, x | P> : FldFin, ... -> FldFin, Map
- ExtensionNumbers(D, Q, p, r) : DB, MonStgElt, RngIntElt, RngIntElt -> SetEnum
- ExtensionPrimes(D, Q) : DB, MonStgElt -> SetEnum
- ExtensionProcess(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFPExtProc
- ExtensionProcess(G, M, F) : GrpPerm, ModRng, GrpFP -> Process
- HasPointsOverExtension(X) : Sch -> BoolElt
- HasSingularPointsOverExtension(C) : Sch -> BoolElt
- IsExtension(G, H, f) : GrpPC, GrpPC, [Map] -> BoolElt, GrpPC
- IsExtensionOf(G) : GrpPerm -> [],
- IsExtensionOf(L) : [GrpPerm] -> [], []
- LeftExactExtension(C) : ModCpx -> ModCpx
- LeftZeroExtension(C) : ModCpx -> ModCpx
- LogCanonicalThresholdOverExtension(C) : Sch -> FldRatElt
- LogarithmicFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
- MaximalExtension(~M, N) : ModGrp, ModGrp ->
- MaximalExtension(M, N) : ModGrp, ModGrp -> ModGrp
- MaximalExtension(M, N, E, r) : ModGrp, ModGrp, ModTupFld, map -> ModGrp
- NextExtension(~P) : Rec -> GrpPC
- PurelyRamifiedExtension(R,f) : RngDiffOp,RngUPolElt -> RngDiffOp, Map
- PurelyRamifiedExtension(f) : RngUPolElt[RngDiff] -> RngDiff, Map
- RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
- RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum
- RandomExtension(F, n) : FldFin, RngIntElt -> FldFin
- RationalExtensionRepresentation(F) : FldFunG -> FldFun
- RayClassField(m) : Map -> FldAb
- RightExactExtension(C) : ModCpx -> ModCpx
- RightZeroExtension(C) : ModCpx -> ModCpx
- SimpleExtension(F) : FldAlg -> FldAlg
- SimpleExtension(F) : FldNum -> FldNum
- SplitExtension(GrpPerm,CM) : Cat, ModCoho -> GrpPerm, HomGrp, Map
- SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
- SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
- SplitExtension(CM) : ModCoho -> Grp, HomGrp, Map
- SplitExtension(G, M) : ModCoho -> Grp, ModGrp -> HomGrp, Map
- TotallyRamifiedExtension(L, f) : RngPad, RngUPolElt -> RngPad
- TotallyRamifiedExtension(R, f) : RngSerPow[FldFin], RngUPolElt -> RngSerExt
- UnramifiedExtension(L, n) : RngPad, RngIntElt -> RngPad
- UnramifiedExtension(L, f) : RngPad, RngUPolElt -> RngPad
- UnramifiedExtension(R, f) : RngSerPow[FldFin], RngUPolElt -> RngSerExt
- VariableExtension(I, k, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map
- WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
- ZeroExtension(C) : ModCpx -> ModCpx
- AlgAff_Extension (Example H115E8)
V2.28, 13 July 2023