- Introduction
- Constructing Confluent Presentations
- Properties of a Rewrite Group
- Arithmetic with Words
- Construction of a Word
- Element Operations
- u * v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- u / v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- u ^ n : GrpRWSElt, RngIntElt -> GrpRWSElt
- u ^ v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- Inverse(w) : GrpRWSElt -> GrpRWSElt
- (u, v) : GrpRWSElt, GrpRWSElt -> GrpRWSElt
- (u1, ..., ur) : GrpRWSElt, ..., GrpRWSElt -> GrpRWSElt
- u eq v : GrpRWSElt, GrpRWSElt -> BoolElt
- u ne v : GrpRWSElt, GrpRWSElt -> BoolElt
- IsId(w) : GrpRWSElt -> BoolElt
- # u : GrpRWSElt -> RngIntElt
- ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
- Example GrpRWS_Arithmetic (H81E8)
- Operations on the Set of Group Elements
- Random(G, n) : GrpRWS, RngIntElt -> GrpRWSElt
- Random(G) : GrpRWS -> GrpRWSElt
- Representative(G) : GrpRWS -> GrpRWSElt
- Set(G, a, b) : GrpRWS, RngIntElt, RngIntElt -> SetEnum
- Set(G) : GrpRWS -> SetEnum
- Seq(G, a, b) : GrpRWS, RngIntElt, RngIntElt -> SeqEnum
- Seq(G) : GrpRWS -> SeqEnum
- Example GrpRWS_Set (H81E9)
- Homomorphisms
- Conversion to a Finitely Presented Group
- Bibliography
V2.28, 13 July 2023