- H. E. A. Campbell, B. Fodden, and David L. Wehlau, Invariants of the diagonal Cp-action on V3, J. Algebra 303 (2006), no. 2, 501–513.[MR]
- H. E. A. Campbell, I. P. Hughes, G. Kemper, R. J. Shank, and D. L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000), no. 1, 21–34.[MR]
- H. E. A. Campbell, R. J. Shank, and D. L. Wehlau, Vector invariants for the two dimensional modular representation of a cyclic group of prime order, Advances in Mathematics 225 (2010), no. 2, 1069–1094.[doi]
- Jan Draisma, Gregor Kemper, and David Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556–571.[MR]
- Alexander Duncan, Michael LeBlanc, and David L. Wehlau, A SAGBI basis for F[V2⊕V2⊕V3]C p, Canad. Math. Bull. 52 (2009), no. 1, 72–83.[MR]
- R. James Shank and David L. Wehlau, On the depth of the invariants of the symmetric power representations of SL2(Fp), J. Algebra 218 (1999), no. 2, 642–653.[MR]
- R. James Shank and David L. Wehlau, Computing modular invariants of p-groups, J. Symbolic Comput. 34 (2002), no. 5, 307–327.[MR]
- R. James Shank and David L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order, Bull. London Math. Soc. 34 (2002), no. 4, 438–450.[MR]
- R. James Shank and David L. Wehlau, Decomposing symmetric powers of certain modular representations of cyclic groups, Progress in Mathematics 278 (2010), 169–196.[arXiv]