- George Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Internat. J. Algebra Comput. 15 (2005), no. 4, 649–682.[MR]
- George Havas and M. R. Vaughan-Lee, Computing with 4-Engel groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 475–485.[MR]
- George Havas and Michael Vaughan-Lee, On counterexamples to the Hughes conjecture, J. Algebra 322 (2009), no. 3, 791–801.
- M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), no. 1, 383–401.[MR]
- M. F. Newman and Michael Vaughan-Lee, Engel-4 groups of exponent 5. II. Orders, Proc. London Math. Soc. (3) 79 (1999), no. 2, 283–317.[MR]
- E. A. O'Brien and M. R. Vaughan-Lee, The groups with order p7 for odd prime p, J. Algebra 292 (2005), no. 1, 243–258.[MR]
- E. A. O'Brien and Michael Vaughan-Lee, The 2-generator restricted Burnside group of exponent 7, Internat. J. Algebra Comput. 12 (2002), no. 4, 575–592.[MR]
- Michael Vaughan-Lee, The restricted Burnside problem, London Mathematical Society Monographs. New Series, vol. 8, The Clarendon Press Oxford University Press, New York, 1993, pp. xiv+256.[MR]
- Michael Vaughan-Lee, Engel-4 groups of exponent 5, Proc. London Math. Soc. (3) 74 (1997), no. 2, 306–334.[MR]
- Michael Vaughan-Lee, Simple Lie algebras of low dimension over GF(2), LMS J. Comput. Math. 9 (2006), 174–192 (electronic).[MR]
- Michael Vaughan-Lee, On 4-Engel groups, LMS J. Comput. Math. 10 (2007), 341–353 (electronic).[MR]