- N. Bruin, K. Győry, L. Hajdu, and Sz. Tengely, Arithmetic progressions consisting of unlike powers, Indag. Math. (N.S.) 17 (2006), no. 4, 539–555.[MR]
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885.[MR/arXiv]
- Lajos Hajdu and Szabolcs Tengely, Arithmetic progressions of squares, cubes and n-th powers, Funct. Approx. Comment. Math. 41 (2009), no. 2, 129–138.[MR/arXiv]
- Lajos Hajdu, Szabolcs Tengely, and Robert Tijdeman, Cubes in products of terms in arithmetic progression, Publ. Math. Debrecen 74 (2009), no. 1-2, 215–232.[MR]
- Shanta Laishram, T. N. Shorey, and Szabolcs Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power, Acta Arith. 135 (2008), no. 2, 143–158.[MR]
- Sz. Tengely, Note on the paper: "An extension of a theorem of Euler" by N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, Acta Arith. 134 (2008), no. 4, 329–335.[MR]
- Szabolcs Tengely, On the Diophantine equation x2+a2=2yp, Indag. Math. (N.S.) 15 (2004), no. 2, 291–304.[MR]
- Szabolcs Tengely, Effective methods for Diophantine equations, PhD Thesis, Leiden University, 2005.
- Szabolcs Tengely, Triangles with two integral sides, Ann. Math. Inform. 34 (2007), 89–95.[MR]