- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 2, 17–20.[MR]
- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On perfect powers in Lucas sequences, Int. J. Number Theory 1 (2005), no. 3, 309–332.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Sur les nombres de Fibonacci de la forme qkyp, C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327–330.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969–1018.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations II: The Lebesgue-Nagell equation, Compos. Math. 142 (2006), no. 1, 31–62.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations, Canad. J. Math. 60 (2008), no. 3, 491–519.[MR/link]
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885.[MR/arXiv]
- Imin Chen and Samir Siksek, Perfect powers expressible as sums of two cubes, J. Algebra 322 (2009), no. 3, 638–656.[MR/doi]
- J. E. Cremona, M. Prickett, and Samir Siksek, Height difference bounds for elliptic curves over number fields, J. Number Theory 116 (2006), no. 1, 42–68.[MR]
- F. S. Abu Muriefah, F. Luca, S. Siksek, and S. Tengely, On the Diophantine equation x2+C=2yn, Int. J. Number Theory (2008).
- Samir Siksek, On standardized models of isogenous elliptic curves, Math. Comp. 74 (2005), no. 250, 949–951 (electronic).[MR]
- Samir Siksek, The modular approach to diophantine equations, Number Theory, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007, pp. 495-527.[doi]
- Samir Siksek, Chabauty for symmetric powers of curves, Algebra Number Theory 3 (2009), no. 2, 209–236.[MR/doi]
- Samir Siksek and John E. Cremona, On the Diophantine equation x2+7=ym, Acta Arith. 109 (2003), no. 2, 143–149.[MR]
- Samir Siksek and Michael Stoll, On a problem of Hajdu and Tengely, preprint (2009), 8 pages.[arXiv]