1. H. E. A. Campbell, I. P. Hughes, G. Kemper, R. J. Shank, and D. L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000), no. 1, 21–34.[MR]
  2. H. E. A. Campbell, R. J. Shank, and D. L. Wehlau, Vector invariants for the two dimensional modular representation of a cyclic group of prime order, Advances in Mathematics 225 (2010), no. 2, 1069–1094.[doi]
  3. P. Fleischmann, M. Sezer, R. J. Shank, and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, Adv. Math. 207 (2006), no. 1, 149–155.[MR]
  4. Müfit Sezer and R. James Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl. Algebra 205 (2006), no. 1, 210–225.[MR]
  5. R. J. Shank, Classical covariants and modular invariants, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 241–249.[MR]
  6. R. James Shank and David L. Wehlau, On the depth of the invariants of the symmetric power representations of SL2(Fp), J. Algebra 218 (1999), no. 2, 642–653.[MR]
  7. R. James Shank and David L. Wehlau, Computing modular invariants of p-groups, J. Symbolic Comput. 34 (2002), no. 5, 307–327.[MR]
  8. R. James Shank and David L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order, Bull. London Math. Soc. 34 (2002), no. 4, 438–450.[MR]
  9. R. James Shank and David L. Wehlau, Decomposing symmetric powers of certain modular representations of cyclic groups, Progress in Mathematics 278 (2010), 169–196.[arXiv]