- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283.[MR]
- Francisco Diaz y Diaz, Jean-François Jaulent, Sebastian Pauli, Michael Pohst, and Florence Soriano-Gafiuk, A new algorithm for the computation of logarithmic l-class groups of number fields, Experiment. Math. 14 (2005), no. 1, 65–74.[MR]
- C. Fieker and M. E. Pohst, On lattices over number fields, Algorithmic Number Theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 133–139.[MR]
- Claus Fieker and Michael E. Pohst, Dependency of units in number fields, Math. Comp. 75 (2006), no. 255, 1507–1518 (electronic).[MR]
- Claus Fieker and Michael E. Pohst, A lower regulator bound for number fields, J. Number Theory 128 (2008), no. 10, 2767–2775.[MR]
- Florian Hess, Sebastian Pauli, and Michael E. Pohst, Computing the multiplicative group of residue class rings, Math. Comp. 72 (2003), no. 243, 1531–1548 (electronic).[MR]
- Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, and Florence Soriano-Gafiuk, Computation of 2-groups of positive classes of exceptional number fields, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 715–732.[MR]
- Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, and Florence Soriano-Gafiuk, Computation of 2-groups of narrow logarithmic divisor classes of number fields, J. Symbolic Comput. 44 (2009), no. 7, 852–863.[MR/doi]
- F. Leprévost, M. Pohst, and A. Schöpp, Rational torsion of J0(N) for hyperelliptic modular curves and families of Jacobians of genus 2 and genus 3 curves with a rational point of order 5, 7 or 10, Abh. Math. Sem. Univ. Hamburg 74 (2004), 193–203.[MR]
- Franck Leprévost, Michael Pohst, and Andreas Schöpp, Familles de polynômes liées aux courbes modulaires X(l) unicursales et points rationnels non-triviaux de courbes elliptiques quotient, Acta Arith. 110 (2003), no. 4, 401–410.[MR]
- Franck Leprévost, Michael Pohst, and Andreas Schöpp, Units in some parametric families of quartic fields, Acta Arith. 127 (2007), no. 3, 205–216.[MR]
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. I, Math. Comp. 45 (1985), no. 171, 209–221, S5–S16.[MR]
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. II, Math. Comp. 60 (1993), no. 202, 817–825.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). I. The five and seven dimensional cases, Math. Comp. 31 (1977), no. 138, 536–551.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). II. The six dimensional case, Math. Comp. 31 (1977), no. 138, 552–573.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). III. The nine-dimensional case, Math. Comp. 34 (1980), no. 149, 245–258.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). IV. Remarks on even dimensions with applications to n = 8, Math. Comp. 34 (1980), no. 149, 259–275.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). V. The eight-dimensional case and a complete description of dimensions less than ten, Math. Comp. 34 (1980), no. 149, 277–301, loose microfiche suppl.[MR]
- M. E. Pohst, Computational aspects of Kummer theory, Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 259–272.[MR]