1. Laura Bader, Nicola Durante, Maska Law, Guglielmo Lunardon, and Tim Penttila, Symmetries of BLT-sets, in Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001), vol. 29, 2003, pp. 41–50.[MR]
  2. Laura Bader, Christine M. O'Keefe, and Tim Penttila, Some remarks on flocks, J. Aust. Math. Soc. 76 (2004), no. 3, 329–343.[MR]
  3. John Bamberg and Tim Penttila, A classification of transitive ovoids, spreads, and m-systems of polar spaces, Forum Math. 21 (2009), no. 2, 181–216.[MR]
  4. I. Cardinali, N. Durante, T. Penttila, and R. Trombetti, Bruen chains over fields of small order, Discrete Math. 282 (2004), no. 1-3, 245–247.[MR]
  5. Antonio Cossidente and Tim Penttila, Hemisystems on the Hermitian surface, J. London Math. Soc. (2) 72 (2005), no. 3, 731–741.[MR]
  6. Antonio Cossidente and Tim Penttila, On m-regular systems on H(5,q2), J. Algebraic Combin. 29 (2009), no. 4, 437–445.[MR]
  7. William M. Kantor and Tim Penttila, Reconstructing simple group actions, Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 147–180.[MR]
  8. Maska Law and Tim Penttila, Classification of flocks of the quadratic cone over fields of order at most 29, Adv. Geom. 3 (2003), no. Special Issue, S232–S244.[MR]
  9. Maska Law and Tim Penttila, Construction of BLT-sets over small fields, European J. Combin. 25 (2004), no. 1, 1–22.[MR]
  10. Werner Nickel, Alice C. Niemeyer, Christine M. O'Keefe, Tim Penttila, and Cheryl E. Praeger, The block-transitive, point-imprimitive 2-(729,8,1) designs, Appl. Algebra Engrg. Comm. Comput. 3 (1992), no. 1, 47–61.[MR]
  11. Tim Penttila, Applications of computer algebra to finite geometry, Finite geometries, groups, and computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 203–221.[MR]
  12. Tim Penttila and Blair Williams, Ovoids of parabolic spaces, Geom. Dedicata 82 (2000), no. 1-3, 1–19.[MR]