Coding Theory Linear Codes: General

94B05, 94B12, 94B60
[1] Salah A. Aly, Asymmetric and symmetric subsystem BCH codes and beyond, 2008.
[2] E. F. Assmus, Jr. and J. D. Key, Designs and codes: an update, Des. Codes Cryptogr. 9 (1996), no. 1, 7-27, Second Upper Michigan Combinatorics Workshop on Designs, Codes and Geometries (Houghton, MI, 1994). MR MR1412173 (97m:94021)
[3] , Polynomial codes and finite geometries, Handbook of Coding Theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 1269-1343. MR MR1667952
[4] Christine Bachoc, On harmonic weight enumerators of binary codes, Des. Codes Cryptogr. 18 (1999), no. 1-3, 11-28, Designs and codes-a memorial tribute to Ed Assmus. MR MR1738653 (2002b:94025)
[5] _, Harmonic weight enumerators of nonbinary codes and MacWilliams identities, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 123. MR MR1816384 (2002b:94024)
[6] Lynn M. Batten, Michelle Davidson, and Leo Storme, An analysis of Chen's construction of minimum-distance five codes, IEEE Trans. Inform. Theory 46 (2000), no. 2, 505-511. MR MR1748985 (2000m:94031)
[7] Thierry P. Berger, Goppa and related codes invariant under a prescribed permutation, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2628-2633. MR MR1806822
[8] Koichi Betsumiya, T. Aaron Gulliver, and Masaaki Harada, Binary optimal linear rate $1 / 2$ codes, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Honolulu, HI, 1999), Lecture Notes in Comput. Sci., vol. 1719, Springer, Berlin, 1999, pp. 462-471. MR MR1846520 (2002j:94060)
[9] Ezio Biglieri, John K. Karlof, and Emanuele Viterbo, Representing group codes as permutation codes, IEEE Trans. Inform. Theory 45 (1999), no. 6, 2204-2207. MR MR1720681 (2000g:94058)
[10] Delphine Boucher and Felix Ulmer, Coding with skew polynomial rings, J. Symbolic Comput. 44 (2009), no. 12, 1644-1656. MR MR2553570
[11] Iliya Bouyukliev and Valentin Bakoev, A method for efficiently computing the number of codewords of fixed weights in linear codes, Discrete Appl. Math. 156 (2008), no. 15, 2986-3004. MR MR2457507
[12] Iliya Bouyukliev, Markus Grassl, and Zlatko Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over GF(4), Discrete Math. 281 (2004), no. 1-3, 43-66. MR MR2047756 (2005g:94094)
[13] Iliya Bouyukliev and Juriaan Simonis, Some new results for optimal ternary linear codes, IEEE Trans. Inform. Theory 48 (2002), no. 4, 981-985. MR MR1908461 (2003c:94043)
[14] Thomas Britz and Keisuke Shiromoto, Designs from subcode supports of linear codes, Des. Codes Cryptogr. 46 (2008), no. 2, 175-189. MR MR2368992 (2009a:94040)
[15] Stanislav Bulygin and Ruud Pellikaan, Bounded distance decoding of linear errorcorrecting codes with Gröbner bases, J. Symb. Comput. 44 (2009), no. 12, 1626-1643.
[16] A. Robert Calderbank, Eric M. Rains, P. W. Shor, and Neil J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 1369-1387. MR MR1665774 (99m:94063)
[17] Lionel Chaussade, Pierre Loidreau, and Felix Ulmer, Skew codes of prescribed distance or rank, Des. Codes Cryptogr. Online first (2008), 18.
[18] Anne Desideri Bracco, Treillis de codes quasi-cycliques, European J. Combin. 25 (2004), no. 4, 505-516. MR MR2069378 (2005c:94073)
[19] Cunsheng Ding, David Kohel, and San Ling, Elementary 2-group character codes, IEEE Trans. Inform. Theory 46 (2000), no. 1, 280-284. MR MR1743594 (2000j:94030)
[20] Peng Ding and Jennifer D. Key, Minimum-weight codewords as generators of generalized Reed-Muller codes, IEEE Trans. Inform. Theory 46 (2000), no. 6, 2152-2158. MR MR1781373 (2001g:94017)
[21] , Subcodes of the projective generalized Reed-Muller codes spanned by minimumweight vectors, Des. Codes Cryptogr. 26 (2002), no. 1-3, 197-211. MR MR1919877 (2004f:94092)
[22] Thomas Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes, Adv. Math. Commun. 3 (2009), no. 4, 363-383. MR MR2559135
[23] Luís R. A. Finotti, Minimal degree liftings in characteristic 2, J. Pure Appl. Algebra 207 (2006), no. 3, 631-673. MR MR2265544 (2007g:11068)
[24] Philippe Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), no. 1, 85-107. MR MR1879128 (2002m:94056)
[25] Philippe Gaborit, W. Cary Huffman, Jon-Lark Kim, and Vera Pless, On additive GF (4) codes, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 135-149. MR MR1816395 (2002c:94046)
[26] Philippe Gaborit and Oliver D. King, Linear constructions for DNA codes, Theoret. Comput. Sci. 334 (2005), no. 1-3, 99-113. MR MR2132945 (2006b:94073)
[27] Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, Weight enumerators of duadic and quadratic residue codes, IEEE International Symposium on Information Theory (ISIT), Chicago, USA, 2004.
[28] Julia Galstad and Gerald Hoehn, A new class of codes over $Z_{2} \times Z_{2}, 2010$.
[29] Santos González, Consuelo Martínez, and Alejandro P. Nicolás, Classic and quantum error correcting codes, Coding Theory and Applications, Lecture Notes in Computer Science, vol. 5228, Springer, 2008, pp. 56-68.
[30] Daniel M. Gordon, Victor Miller, and Peter Ostapenko, Optimal hash functions for approximate closest pairs on the n-cube, 2008.
[31] M. Grassl and G. White, New good linear codes by special puncturings, International Symposium on Information Theory, 2004. ISIT 2004 (2004), 454-.
[32] Fernando Hernando and Diego Ruano, Sixteen new linear codes with Plotkin sum, 2008.
[33] W. Cary Huffman and Vera Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003. MR MR1996953 (2004k:94077)
[34] Paul Hurley and Ted Hurley, Codes from zero-divisors and units in group rings, International Journal of Information and Coding Theory 1 (2009), no. 1, 57-87.
[35] Ted Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), no. 3, 431-463. MR MR2490664
[36] Martin Janošov, Martin Husák, Peter Farkaš, and Ana Garcia Armada, New [47, 15, 16] linear binary block code, IEEE Trans. Inform. Theory 54 (2008), no. 1, 423-424. MR MR2446769
[37] John K. Karlof and Yaw O. Chang, Optimal permutation codes for the Gaussian channel, IEEE Trans. Inform. Theory 43 (1997), no. 1, 356-358. MR MR1610104 (98j:94005)
[38] J. D. Key, Codes and finite geometries, Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1998), vol. 131, 1998, pp. 85-99. MR MR1676476 (2000a:51011)
[39] , Some error-correcting codes and their applications, Applied Mathematical Modeling: A Multidisciplinary Approach, Edited by D. R. Shier and K. T. Wallenius, CRC Press, Boca Raton, Fl., 1999.
[40] J. D. Key, B. Novick, and F. E. Sullivan, Binary codes of structures dual to unitals, Proceedings of the Twenty-eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1997), vol. 123, 1997, pp. 119-124. MR MR1605081 (99d:94043)
[41] J. D. Key and P. Seneviratne, Binary codes from rectangular lattice graphs and permutation decoding, European J. Combin. 28 (2007), no. 1, 121-126. MR MR2261808 (2007g:94086)
[42] Dae San Kim, Codes associated with $O^{+}\left(2 n, 2^{r}\right)$ and power moments of Kloosterman sums, 2008.
[43] , Codes associated with orthogonal groups and power moments of Kloosterman sums, 2008.
[44] _, Codes associated with special linear groups and power moments of multidimensional Kloosterman sums, 2008.
[45] Jon-Lark Kim, Keith E. Mellinger, and Vera Pless, Projections of binary linear codes onto larger fields, SIAM J. Discrete Math. 16 (2003), no. 4, 591-603 (electronic). MR MR2032082 (2005a:94099)
[46] Chong Jie Lim, Consta-abelian polyadic codes, IEEE Trans. Inform. Theory 51 (2005), no. 6, 2198-2206. MR MR2235293
[47] San Ling, Chaoping Xing, and Ferruh Özbudak, An explicit class of codes with good parameters and their duals, Discrete Appl. Math. 154 (2006), no. 2, 346-356. MR MR2194407 (2006h:94257)
[48] J. Löfvenberg, Binary fingerprinting codes, Des. Codes Cryptogr. 36 (2005), no. 1, 69-81. MR MR2152177
[49] Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, Classification of linear codes exploiting an invariant, Contrib. Discrete Math. 1 (2006), no. 1, 1-7 (electronic). MR MR2212135 (2006k:94162)
[50] Patric R. J. Östergård, Classifying subspaces of Hamming spaces, Des. Codes Cryptogr. 27 (2002), no. 3, 297-305. MR MR1928445 (2003i:94060)
[51] Kevin T. Phelps, An enumeration of 1-perfect binary codes, Australas. J. Combin. 21 (2000), 287-298. MR MR1758278 (2001a:94050)
[52] Ralph-Hardo Schulz, Check character systems and anti-symmetric mappings, Computational Discrete Mathematics, Lecture Notes in Comput. Sci., vol. 2122, Springer, Berlin, 2001, pp. 136-147. MR MR1911586
[53] Anuradha Sharma, Gurmeet K. Bakshi, and Madhu Raka, Polyadic codes of prime power length, Finite Fields Appl. 13 (2007), no. 4, 1071-1085. MR MR2360540
[54] Derek H. Smith, Niema Aboluion, Roberto Montemanni, and Stephanie Perkins, Linear and nonlinear constructions of DNA codes with Hamming distance d and constant $G C$-content, Discrete Math. To appear (2010).
[55] C. Tjhai, M. Tomlinson, M. Grassl, R. Horan, M. Ahmed, and M. Ambroze, New linear codes derived from binary cyclic codes of length 151, IEE Proceedings: Communications 153 (2006), no. 5, 581-585.
[56] M. van Dijk, S. Egner, M. Greferath, and A. Wassermann, On binary linear [160, 80, 24] codes, IEEE International Symposium on Information Theory (ISIT), Yokohama, 2003.
[57] M. van Eupen and P. Lisonek, Classification of some optimal ternary linear codes of small length, Designs, Codes and Cryptography 10 (1997), 63-84.
[58] Judy L. Walker, Constructing critical indecomposable codes, IEEE Trans. Inform. Theory 47 (2001), no. 5, 1780-1795. MR MR1842518 (2002h:94097)
[59] Harold N. Ward, An Introduction to Algebraic Coding Theory, Coding Theory and Quantum Computing, Contemp. Math., vol. 381, Amer. Math. Soc., Providence, RI, 2005, pp. 27-52. MR MR2170798 (2006e:94001)

Cyclic Codes
 94B15

[1] Taher Abualrub, Ali Ghrayeb, Nuh Aydin, and Irfan Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inform. Theory 56 (2010), no. 5, 2081-2090.
[2] Maria Carmen V. Amarra and Fidel R. Nemenzo, On: " $1-u$)-cyclic codes over $F_{p^{k}}+u F_{p^{k}} "$, Appl. Math. Lett. 21 (2008), no. 11, 1129-1133. MR MR2459836
[3] Makoto Araya and Masaaki Harada, MDS codes over F_{9} related to the ternary Golay code, Discrete Math. 282 (2004), no. 1-3, 233-237. MR MR2059522 (2005b:94059)
[4] Marc A. Armand, List decoding of generalized Reed-Solomon codes over commutative rings, IEEE Trans. Inform. Theory 51 (2005), no. 1, 411-419. MR MR2235785 (2007j:94101)
[5] T. P. Berger, Quasi-cyclic Goppa codes, IEEE International Symposium on Information Theory, ISIT 2000, 2000.
[6] Grégoire Bommier and Francis Blanchet, Binary quasi-cyclic Goppa codes, Des. Codes Cryptogr. 20 (2000), no. 2, 107-124. MR MR1774118 (2002b:94044)
[7] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $F_{2}+u F_{2}$, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250-1255. MR MR1686262 (2000b:94020)
[8] Nigel Boston, The minimum distance of the [137,69] binary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282. MR MR1677868 (99k:94052)
[9] , Bounding minimum distances of cyclic codes using algebraic geometry, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001, p. 10 pp. (electronic). MR MR1985260 (2004e:94039)
[10] Nigel Boston and Gary McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbolic Comput. 45 (2010), no. 7, 723-733. MR 2645974
[11] D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 379-389. MR MR2322946
[12] Anne Desideri Bracco, Ann Marie Natividad, and Patrick Solé, On quintic quasicyclic codes, Discrete Appl. Math. 156 (2008), no. 18, 3362-3375. MR MR2467310 (2010e:94295)
[13] Danyo Danev and Jonas Olsson, On a sequence of cyclic codes with minimum distance six, IEEE Trans. Inform. Theory 46 (2000), no. 2, 673-674. MR MR1748995 (2001a:94041)
[14] Rumen Daskalov and Markus Grassl, New cyclic and quasi-cyclic quaternary linear codes, Proceedings Fifth International Workshop on Optimal Codes and Related Topics, (OC 2007) Balchik, Bulgaria, June 2007, 2007, pp. 56-61.
[15] Anne Desideri Bracco, Treillis de codes quasi-cycliques, European J. Combin. 25 (2004), no. 4, 505-516. MR MR2069378 (2005c:94073)
[16] Cunsheng Ding and Tor Helleseth, Generalized cyclotomic codes of length $p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$, IEEE Trans. Inform. Theory 45 (1999), no. 2, 467-474. MR MR1677011 (2000a:94018)
[17] Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Note on the g-fold joint weight enumerators of self-dual codes over Z_{k}, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 437-445. MR MR1831938 (2002e:94126)
[18] M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), no. 3, 375-386. MR MR2516431
[19] Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory 51 (2005), no. 1, 402-407. MR MR2234603
[20] Markus Grassl, On the minimum distance of some quadratic-residue codes, ISIT 2000. Sorrento, Italy, June 25-30, 2000, 2000, pp. 253-253.
[21] Markus Grassl, New binary codes from a chain of cyclic codes, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1178-1181. MR MR1830062
[22] Markus Grassl and Greg White, New codes from chains of quasi-cyclic codes, IEEE International Symposium on Information Theory (ISIT), Adelaide, 2005.
[23] T. Aaron Gulliver and Masaaki Harada, Orthogonal frames in the Leech lattice and a type II code over Z_{22}, J. Combin. Theory Ser. A 95 (2001), no. 1, 185-188. MR MR1840485 (2002d:94061)
[24] Cem Güneri and Ferruh Özbudak, Cyclic codes and reducible additive equations, IEEE Trans. Inform. Theory 53 (2007), no. 2, 848-853. MR MR2302794
[25] K. J. Horadam and P. Udaya, A new class of ternary cocyclic Hadamard codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 1, 65-73. MR MR1989636 (2004j:94034)
[26] Doug Kuhlman, The minimum distance of the [83, 42] ternary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282. MR MR1675978 (99k:94056)
[27] San Ling and Patrick Solé, Duadic codes over $\mathbf{F}_{2}+u \mathbf{F}_{2}$, Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 5, 365-379. MR MR1864608 (2002m:94065)
[28] _ , Nonlinear p-ary sequences, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 117-125. MR MR1995563 (2004g:94040)
[29] Teo Mora and Massimiliano Sala, On the Gröbner bases of some symmetric systems and their application to coding theory, J. Symbolic Comput. 35 (2003), no. 2, 177-194. MR MR1958953 (2004c:94118)
[30] Carmen-Simona Nedeloaia, On weight distribution of cyclic self-dual codes, IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland,, 2002.
[31] Carmen-Simona Nedeloaia, Weight distributions of cyclic self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1582-1591. MR MR1984951 (2004f:94111)
[32] Emmanuela Orsini and Massimiliano Sala, General error locator polynomials for binary cyclic codes with $t \leq 2$ and $n<63$, IEEE Trans. Inform. Theory 53 (2007), no. 3, 1095-1107. MR MR2302814 (2008b:94122)
[33] Massimiliano Sala, Groebner bases and distance of cyclic codes, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 2, 137-162. MR MR1912893 (2003f:94090)
[34] _ Upper bounds on the dual distance of $\mathrm{BCH}(255, k)$, Des. Codes Cryptogr. 30 (2003), no. 2, 159-168. MR MR2007208 (2004h:94059)
[35] _, Gröbner basis techniques to compute weight distributions of shortened cyclic codes, J. Algebra Appl. 6 (2007), no. 3, 403-414. MR MR2337760 (2008k:94091)
[36] C. Tjhai and M. Tomlinson, Results on binary cyclic codes, Electronics Letters 43 (2007), no. 4, 234-235.
[37] José Felipe Voloch, Computing the minimal distance of cyclic codes, Comput. Appl. Math. 24 (2005), no. 3, 393-398. MR MR2240450 (2007b:94307)

Self-Dual Codes

[1] Christine Bachoc and Philippe Gaborit, On extremal additive \mathbf{F}_{4} codes of length 10 to 18, J. Théor. Nombres Bordeaux 12 (2000), no. 2, 255-271, Colloque International de Théorie des Nombres (Talence, 1999). MR MR1823184 (2002b:94056)
[2] _ On extremal additive F_{4} codes of length 10 to 18, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001, p. 10 pp. (electronic). MR MR1985228 (2004d:94037)
[3] _ , Designs and self-dual codes with long shadows, J. Combin. Theory Ser. A 105 (2004), no. 1, 15-34. MR MR2030137 (2005a:94084)
[4] Christine Bachoc, T. Aaron Gulliver, and Masaaki Harada, Isodual codes over $Z_{2 k}$ and isodual lattices, J. Algebraic Combin. 12 (2000), no. 3, 223-240. MR MR1803233 (2001j:94052)
[5] Eiichi Bannai, Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1194-1205. MR MR1686252 (2000i:94091)
[6] Koichi Betsumiya, Minimum Lee weights of type II codes over F2r, Discrete Math. 308 (2008), no. 14, 3018-3022. MR MR2413878
[7] Koichi Betsumiya, T. Aaron Gulliver, and Masaaki Harada, Extremal self-dual codes over $F_{2} \times F_{2}$, Des. Codes Cryptogr. 28 (2003), no. 2, 171-186. MR MR1962804 (2004c:94111)
[8] Koichi Betsumiya and Masaaki Harada, Binary optimal odd formally self-dual codes, Des. Codes Cryptogr. 23 (2001), no. 1, 11-21. MR MR1825025 (2002b:94026)
[9] _ Classification of formally self-dual even codes of lengths up to 16, Des. Codes Cryptogr. 23 (2001), no. 3, 325-332. MR MR1840914 (2002d:94051)
[10] , Formally self-dual codes related to Type II codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 81-88. MR MR1995560 (2004g:94079)
[11] A. Bonnecaze, P. Solé, and P. Udaya, Tricolore 3-designs in type III codes, Discrete Math. 241 (2001), no. 1-3, 129-138. MR MR1861413 (2002m:05031)
[12] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $F_{2}+u F_{2}$, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250-1255. MR MR1686262 (2000b:94020)
[13] Alexis Bonnecaze, Anne Desideri Bracco, Steven T. Dougherty, Luz R. Nochefranca, and Patrick Solé, Cubic self-dual binary codes, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2253-2259. MR MR2004780 (2004i:94052)
[14] Alexis Bonnecaze, Bernard Mourrain, and Patrick Solé, Jacobi polynomials, type II codes, and designs, Des. Codes Cryptogr. 16 (1999), no. 3, 215-234. MR MR1689581 (2000b:05032)
[15] Stefka Bouyuklieva and Masaaki Harada, Extremal self-dual [50, 25, 10] codes with automorphisms of order 3 and quasi-symmetric 2-(49, 9, 6) designs, Des. Codes Cryptogr. 28 (2003), no. 2, 163-169. MR MR1962803 (2004b:94083)
[16] Stefka Bouyuklieva, E. A. O'Brien, and Wolfgang Willems, The automorphism group of a binary self-dual doubly even $[72,36,16]$ code is solvable, IEEE Trans. Inform. Theory 52 (2006), no. 9, 4244-4248. MR MR2298550
[17] A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_{4} and even unimodular lattices, J. Algebraic Combin. 6 (1997), no. 2, 119-131. MR MR1436530 (97k:94078)
[18] Jean-Claude Carlach and Ayoub Otmani, A systematic construction of self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 11, 3005-3009. MR MR2027579 (2004k:94080)
[19] Robin Chapman, Steven T. Dougherty, Philippe Gaborit, and Patrick Solé, 2-modular lattices from ternary codes, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 73-85. MR MR1925991 (2004g:94091)
[20] Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42 (2007), no. 1, 93-101. MR MR2277060 (2007m:94201)
[21] , Permutation groups and binary self-orthogonal codes, J. Algebra 309 (2007), no. 2, 610-621. MR MR2303196
[22] Daniel B. Dalan, New extremal binary [44, 22, 8] codes, IEEE Trans. Inform. Theory 49 (2003), no. 3, 747-748. MR MR1967201 (2004a:94060)
[23] , New extremal type I codes of lengths 40, 42, and 44, Des. Codes Cryptogr. 30 (2003), no. 2, 151-157. MR MR2007207 (2004h:94055)
[24] Lars Eirik Danielsen and Matthew G. Parker, On the classification of all self-dual additive codes over GF (4) of length up to 12, J. Combin. Theory Ser. A 113 (2006), no. 7, 1351-1367. MR MR2259065 (2007g:94083)
[25] Radinka Dontcheva and Masaaki Harada, Some extremal self-dual codes with an automorphism of order 7, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 75-79. MR MR1995559 (2004f:94093)
[26] Steven T. Dougherty, Philippe Gaborit, Masaaki Harada, and Patrick Solé, Type II codes over $\mathbf{F}_{2}+u \mathbf{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), no. 1, 32-45. MR MR1677846 (2000h:94053)
[27] Steven T. Dougherty, T. Aaron Gulliver, and Manabu Oura, Higher weights and graded rings for binary self-dual codes, Discrete Appl. Math. 128 (2003), no. 1, 121143, International Workshop on Coding and Cryptography (WCC 2001) (Paris). MR MR1991421 (2004f:94094)
[28] Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Note on the biweight enumerators of self-dual codes over $Z_{k}, 2004$.
[29] J. E. Fields, P. Gaborit, W. C. Huffman, and V. Pless, On the classification of extremal even formally self-dual codes, Des. Codes Cryptogr. 18 (1999), no. 1-3, 125-148. MR MR1738661 (2002f:94054)
[30] _, On the classification of extremal even formally self-dual codes of lengths 20 and 22, Discrete Appl. Math. 111 (2001), no. 1-2, 75-86. MR MR1836720 (2002g:94045)
[31] Philippe Gaborit, A bound for certain s-extremal lattices and codes, Arch. Math. (Basel) 89 (2007), no. 2, 143-151. MR MR2341725
[32] Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory 51 (2005), no. 1, 402-407. MR MR2234603
[33] Philippe Gaborit and Ayoub Otmani, Experimental constructions of self-dual codes, Finite Fields Appl. 9 (2003), no. 3, 372-394. MR MR1983055 (2004f:94096)
[34] M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE International Symposium on Information Theory, 2008. ISIT 2008 (2008), 1954-1957.
[35] Markus Grassl and T. Aaron Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), no. 1, 57-81.
[36] T. Aaron Gulliver and Masaaki Harada, Classification of extremal double circulant formally self-dual even codes, Des. Codes Cryptogr. 11 (1997), no. 1, 25-35. MR MR1436757 (97k:94084)
[37] , Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr. 13 (1998), no. 3, 257-269. MR MR1601568 (98i:94045)
[38] _, Double circulant self-dual codes over $Z_{2 k}$, IEEE Trans. Inform. Theory 44 (1998), no. 7, 3105-3123. MR MR1672103 (99m:94043)
[39] , Double circulant self-dual codes over GF(5), Ars Combin. 56 (2000), 3-13. MR MR1768599
[40] _, Classification of extremal double circulant self-dual codes of lengths 74-88, Discrete Math. 306 (2006), no. 17, 2064-2072. MR MR2251825 (2007e:94109)
[41] , On double circulant doubly even self-dual [72, 36, 12] codes and their neighbors, Australas. J. Combin. 40 (2008), 137-144. MR MR2381421 (2008k:94082)
[42] T. Aaron Gulliver, Masaaki Harada, and Jon-Lark Kim, Construction of new extremal self-dual codes, Discrete Math. 263 (2003), no. 1-3, 81-91. MR MR1955716 (2003m:94083)
[43] , Construction of some extremal self-dual codes, Discrete Math. 264 (2003), 55-73.
[44] T. Aaron Gulliver, Masaaki Harada, and Hiroki Miyabayashi, Double circulant and quasi-twisted self-dual codes over F_{5} and F_{7}, Adv. Math. Commun. 1 (2007), no. 2, 223-238. MR MR2306310 (2008b:94109)
[45] , Optimal double circulant self-dual codes over F4. II, Australas. J. Combin. 39 (2007), 163-174. MR MR2351197 (2008h:94108)
[46] T. Aaron Gulliver, Masaaki Harada, Takuji Nishimura, and Patric R. J. Östergård, Near-extremal formally self-dual even codes of lengths 24 and 32, Des. Codes Cryptogr. 37 (2005), no. 3, 465-471. MR MR2177646
[47] T. Aaron Gulliver and Jon-Lark Kim, Circulant based extremal additive self-dual codes over GF(4), IEEE Trans. Inform. Theory 50 (2004), no. 2, 359-366. MR MR2044084 (2005a:94113)
[48] T. Aaron Gulliver, Jon-Lark Kim, and Yoonjin Lee, New MDS or near-MDS self-dual codes, IEEE Trans. Inform. Theory 54 (2008), no. 9, 4354-4360. MR MR2451972
[49] Annika Günther, A mass formula for self-dual permutation codes, Finite Fields Appl. 15 (2009), no. 4, 517-533. MR MR2535593
[50] Sunghyu Han and Jon-Lark Kim, On self-dual codes over F_{5}, Des. Codes Cryptogr. 48 (2008), no. 1, 43-58. MR MR2395089 (2009a:94043)
[51] Masaaki Harada, Construction of an extremal self-dual code of length 62, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1232-1233. MR MR1686258 (2000a:94016)
[52] _, New extremal self-dual codes of lengths 36 and 38, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2541-2543. MR MR1725149
[53] _, An extremal doubly even self-dual code of length 112, Electron. J. Combin. 15 (2008), no. 1, Note 33, 5. MR MR2438589
[54] _, On the existence of frames of the Niemeier lattices and self-dual codes over F_{p}, J. Algebra 321 (2009), no. 8, 2345-2352. MR MR2501524 (2010c:94066)
[55] Masaaki Harada, W. Holzmann, H. Kharaghani, and M. Khorvash, Extremal ternary self-dual codes constructed from negacirculant matrices, Graphs Combin. 23 (2007), no. 4, 401-417. MR MR2328944
[56] Masaaki Harada and Hadi Kharaghani, Orthogonal designs and MDS self-dual codes, Australas. J. Combin. 35 (2006), 57-67. MR MR2239304 (2007h:94077)
[57] Masaaki Harada, Masaaki Kitazume, Akihiro Munemasa, and Boris Venkov, On some self-dual codes and unimodular lattices in dimension 48, European J. Combin. 26 (2005), no. 5, 543-557. MR MR2126638 (2005m:94044)
[58] Masaaki Harada, Masaaki Kitazume, and Michio Ozeki, Ternary code construction of unimodular lattices and self-dual codes over Z_{6}, J. Algebraic Combin. 16 (2002), no. 2, 209-223. MR MR1943589 (2004b:11099)
[59] Masaaki Harada and Akihiro Munemasa, A complete classification of ternary selfdual codes of length 24, J. Combin. Theory Ser. A 116 (2009), no. 5, 1063-1072. MR MR2522420
[60] Masaaki Harada, Akihiro Munemasa, and Boris Venkov, Classification of ternary extremal self-dual codes of length 28, Math. Comp. 78 (2009), no. 267, 1787-1796. MR MR2501075
[61] Masaaki Harada and Takuji Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun. 1 (2007), no. 2, 261-267. MR MR2306315 (2008b:94110)
[62] Masaaki Harada, Takuji Nishimura, and Radinka Yorgova, New extremal self-dual codes of length 66, Math. Balkanica (N.S.) 21 (2007), no. 1-2, 113-121. MR MR2350723 (2008h:94097)
[63] Masaaki Harada, Michio Ozeki, and Kenichiro Tanabe, On the covering radius of ternary extremal self-dual codes, Des. Codes Cryptogr. 33 (2004), no. 2, 149-158. MR MR2080361 (2005d:94214)
[64] Hyun Kwang Kim, Dae Kyu Kim, and Jon-Lark Kim, Type I codes over GF(4), Ars Combin. To appear.
[65] Jon-Lark Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory 47 (2001), no. 1, 386-393. MR MR1820382 (2002b:94032)
[66] , New good Hermitian self-dual codes over GF(4), IEEE International Symposium on Information Theory (ISIT), Washington, 2001, p. 177.
[67] _ New self-dual codes over GF(4) with the highest known minimum weights, IEEE Trans. Inform. Theory 47 (2001), no. 4, 1575-1580. MR MR1830104 (2002b:94033)
[68] Jon-Lark Kim and Yoonjin Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004), no. 1, 79-95. MR MR2030141 (2004k:94084)
[69] C. L. Mallows, V. Pless, and N. J. A. Sloane, Self-dual codes over GF(3), SIAM J. Appl. Math. 31 (1976), no. 4, 649-666. MR MR0441541 (55 \#14404)
[70] C.A. Melchor and P. Gaborit, On the classification of extremal $[36,18,8]$ binary selfdual codes, IEEE Trans. Inform. Theory 54 (2008), no. 10, 4743-4750.
[71] Jamshid Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL: 2, J. Combin. Theory Ser. A 110 (2005), no. 1, 53-69. MR MR2128966 (2006a:05174)
[72] Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006. MR MR2209183
[73] Michio Ozeki, Jacobi polynomials for singly even self-dual codes and the covering radius problems, IEEE Trans. Inform. Theory 48 (2002), no. 2, 547-557. MR MR1891267 (2003c:94048)
[74] B. G. Rodrigues, Self-orthogonal designs and codes from the symplectic groups $S_{4}(3)$ and $S_{4}(4)$, Discrete Math. 308 (2008), no. 10, 1941-1950. MR MR2394462 (2009a:05022)
[75] Marten van Dijk, Sebastian Egner, Marcus Greferath, and Alfred Wassermann, On two doubly even self-dual binary codes of length 160 and minimum weight 24, IEEE Trans. Inform. Theory 51 (2005), no. 1, 408-411. MR MR2235784 (2007m:94202)
[76] R. Yorgova, Constructing self-dual codes using an automorphism group, IEEE Information Theory Workshop, 2006. ITW '06 Chengdu (2006), 11-15.
[77] Radinka Yorgova and Alfred Wassermann, Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr. 48 (2008), no. 2, 155-164. MR MR2403446
[78] Radinka Aleksandrova Yorgova, On binary self-dual codes with automorphisms, IEEE Trans. Inform. Theory 54 (2008), no. 7, 3345-3351. MR MR2450792

Algebraic Geometry Codes

94B27, 94B40

[1] Daniel Augot and Lancelot Pecquet, A Hensel lifting to replace factorization in listdecoding of algebraic-geometric and Reed-Solomon codes, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2605-2614. MR MR1806819 (2001m:94061)
[2] Peter Beelen, The order bound for general algebraic geometric codes, Finite Fields Appl. 13 (2007), no. 3, 665-680. MR MR2332494
[3] Daniel Bierbrauer, Codes auf hyperelliptischen und trigonalen kurven, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, July 2006, p. 129.
[4] Grégoire Bommier and Francis Blanchet, Binary quasi-cyclic Goppa codes, Des. Codes Cryptogr. 20 (2000), no. 2, 107-124. MR MR1774118 (2002b:94044)
[5] Chien-Yu Chen and Iwan M. Duursma, Geometric Reed-Solomon codes of length 64 and 65 over F_{8}, IEEE Trans. Inform. Theory 49 (2003), no. 5, 1351-1353. MR MR1984834
[6] K. L. Clark and J. D. Key, Geometric codes over fields of odd prime power order, Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), vol. 137, 1999, pp. 177-186. MR MR1744201 (2000k:94053)
[7] Jennifer A. Davis, Algebraic geometric codes on anticanonical surfaces, Ph.D. thesis, University of Nebraska, 2007.
[8] Cunsheng Ding, David R. Kohel, and San Ling, Split group codes, IEEE Trans. Inform. Theory 46 (2000), no. 2, 485-495. MR MR1748983 (2001d:94040)
[9] Cunsheng Ding, Harald Niederreiter, and Chaoping Xing, Some new codes from algebraic curves, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2638-2642. MR MR1806824 (2001j:94048)
[10] Giorgio Faina and Massimo Giulietti, Decoding Goppa codes with Magma, Ars Combin. 61 (2001), 221-232. MR MR1863382
[11] Majid Farhadi and Marc Perret, Twisting geometric codes, Finite Fields Appl. 14 (2008), no. 4, 1091-1100. MR MR2457549
[12] C. Guneri and F. Ozbudak, Weil-Serre type bounds for cyclic codes, IEEE Transactions on Information Theory 54 (2008), no. 12, 5381-5395.
[13] Cem Güneri, Henning Stichtenoth, and Ihsan Taşkı, Further improvements on the designed minimum distance of algebraic geometry codes, J. Pure Appl. Algebra 213 (2009), no. 1, 87-97. MR MR2462987
[14] Johan P. Hansen, Toric surfaces and codes, techniques and examples, 2004.
[15] Nathan Owen Ilten and Hendrik Süß, AG codes from polyhedral divisors, 2008.
[16] David Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput. 15 (2004), no. 1, 63-79. MR MR2142431
[17] David Joyner and Amy Ksir, Automorphism groups of some AG codes, IEEE Trans. Inform. Theory 52 (2006), no. 7, 3325-3329. MR MR2240022 (2007c:94280)
[18] David Joyner and Salahoddin Shokranian, Remarks on codes from modular curves: Magma application, 2004.
[19] Hans-Joachim Kroll and Rita Vincenti, PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of $\operatorname{PG}(5,2)$, Discrete Math. 308 (2008), no. 2-3, 408-414. MR MR2378042 (2008j:94066)
[20] Thorsten Lagemann, Codes und automorphismen optimaler artin-schreier-turme, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, April 2006, p. 92.
[21] Douglas A. Leonard, A weighted module view of integral closures of affine domains of type I, Adv. Math. Commun. 3 (2009), no. 1, 1-11.
[22] John Little and Hal Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math. 20 (2006), no. 4, 999-1014 (electronic). MR MR2272243
[23] John Little and Ryan Schwarz, On m-dimensional toric codes, 2005.
[24] , On toric codes and multivariate Vandermonde matrices, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 349-367. MR MR2322944
[25] Benjamin Lundell and Jason McCullough, A generalized floor bound for the minimum distance of geometric Goppa codes, J. Pure Appl. Algebra 207 (2006), no. 1, 155-164. MR MR2244388 (2007c:94290)
[26] Gretchen L. Matthews, Some computational tools for estimating the parameters of algebraic geometry codes, Coding Theory and Quantum Computing, Contemp. Math., vol. 381, Amer. Math. Soc., Providence, RI, 2005, pp. 19-26. MR MR2170797
[27] Gretchen L. Matthews and Todd W. Michel, One-point codes using places of higher degree, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1590-1593. MR MR2241519 (2007b:94311)
[28] Gary McGuire and José Felipe Voloch, Weights in codes and genus 2 curves, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2429-2437 (electronic). MR MR2138886 (2006b:94070)
[29] Keith E. Mellinger, Classes of codes from quadratic surfaces of $\mathrm{PG}(3, q)$, Contrib. Discrete Math. 2 (2007), no. 1, 35-42 (electronic). MR MR2291882 (2008b:94129)
[30] G. Nebe, Kneser-Hecke-operators in coding theory, Abh. Math. Sem. Univ. Hamburg 76 (2006), 79-90. MR MR2293434 (2007m:11090)
[31] Diego Ruano, On the parameters of r-dimensional toric codes, Finite Fields Appl. 13 (2007), no. 4, 962-976. MR MR2360532
[32] John A. Ryan and Kondwani Magamba, Equivalent irreducible Goppa codes and the precise number of quintic Goppa codes of length 32, AFRICON 2007 (2007), 1-4.
[33] Pawel Wocjan, Brill-Noether algorithm construction of geometric Goppa codes and absolute factorization of polynomials, Ph.D. thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 1999, p. 108.
[34] Stephen S.-T. Yau and Huaiqing Zuo, Notes on classification of toric surface codes of dimension 5, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 2, 175-185. MR MR2511885
[35] Marcos Zarzar, Error-correcting codes on low rank surfaces, Finite Fields Appl. 13 (2007), no. 4, 727-737. MR MR2359313

Combinatorial Codes

94B25

[1] Makoto Araya, Masaaki Harada, and Hadi Kharaghani, Some Hadamard matrices of order 32 and their binary codes, J. Combin. Des. 12 (2004), no. 2, 142-146. MR MR2036652 (2004m:94092)
[2] E. F. Assmus, Jr., The coding theory of finite geometries and designs, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Rome, 1988), Lecture Notes in Comput. Sci., vol. 357, Springer, Berlin, 1989, pp. 1-6. MR MR1008488 (90f:51010)
[3] E. F. Assmus, Jr. and Arthur A. Drisko, Binary codes of odd-order nets, Des. Codes Cryptogr. 17 (1999), no. 1-3, 15-36. MR MR1714366 (2000i:94087)
[4] E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: A codingtheoretic approach, Trans. Amer. Math. Soc. 330 (1992), no. 1, 269-293. MR MR10555565 (92f:05024)
[5] _ Designs and codes: an update, Des. Codes Cryptogr. 9 (1996), no. 1, 7-27, Second Upper Michigan Combinatorics Workshop on Designs, Codes and Geometries (Houghton, MI, 1994). MR MR1412173 (97m:94021)
[6] , Polynomial codes and finite geometries, Handbook of Coding Theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 1269-1343. MR MR1667952
[7] Robert F. Bailey and John N. Bray, Decoding the Mathieu group M_{12}, Adv. Math. Commun. 1 (2007), no. 4, 477-487. MR MR2354049
[8] R. D. Baker and K. L. Wantz, Unitals in the code of the Hughes plane, J. Combin. Des. 12 (2004), no. 1, 35-38. MR MR2024247 (2004j:94030)
[9] Koichi Betsumiya, T. Aaron Gulliver, Masaaki Harada, and Akihiro Munemasa, On type II codes over F_{4}, IEEE Trans. Inform. Theory 47 (2001), no. 6, 2242-2248. MR MR1873199 (2002m:94070)
[10] Neil J. Calkin, Jennifer D. Key, and Marialuisa J. de Resmini, Minimum weight and dimension formulas for some geometric codes, Des. Codes Cryptogr. 17 (1999), no. 13, 105-120. MR MR1714374 (2000i:94077)
[11] L. L. Carpenter and J. D. Key, Reed-Muller codes and Hadamard designs from ovals, J. Combin. Math. Combin. Comput. 22 (1996), 79-85. MR MR1418060 (97h:94021)
[12] Ying Cheng and N. J. A. Sloane, Codes from symmetry groups, and a [32, 17, 8] code, SIAM J. Discrete Math. 2 (1989), no. 1, 28-37. MR MR976785 (90h:93026)
[13] Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Permutation groups and binary self-orthogonal codes, J. Algebra 309 (2007), no. 2, 610-621. MR MR2303196
[14] _, Some self-dual codes invariant under the Hall-Janko group, J. Algebra 316 (2007), no. 2, 578-590. MR MR2356845
[15] K. L. Clark, J. D. Key, and M. J. de Resmini, Dual codes of translation planes, European J. Combin. 23 (2002), no. 5, 529-538. MR MR1931937 (2004b:94084)
[16] Marston Conder and John McKay, Markings of the Golay code, New Zealand J. Math. 25 (1996), no. 2, 133-139. MR MR1421485 (97g:05040)
[17] A. Cossidente and A. Sonnino, A geometric construction of a $[110,5,90]_{9}$-linear code admitting the Mathieu group M_{11}, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5251-5252.
[18] Antonio Cossidente and Alessandro Siciliano, A geometric construction of an optimal [67, 9, 30] binary code, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1187-1189. MR MR1830064 (2002a:94041)
[19] M. R. Darafsheh, A. Iranmanesh, and R. Kahkeshani, Some designs and codes invariant under the groups S_{9} and A_{8}, Des. Codes Cryptogr. 51 (2009), no. 2, 211-223. MR MR2480700 (2009k:05193)
[20] Steven T. Dougherty, Jon-Lark Kim, and Patrick Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), no. 1, 45-64. MR MR2262767
[21] Sean V. Droms, Keith E. Mellinger, and Chris Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr. 40 (2006), no. 3, 343-356. MR MR2251325 (2007f:51021)
[22] D.G. Farmer and K.J. Horadam, Presemifield bundles over $G F\left(p^{3}\right)$, IEEE International Symposium on Information Theory, 2008. ISIT 2008 (2008), 2613-2616.
[23] W. Fish, J. D. Key, and E. Mwambene, Graphs, designs and codes related to the n-cube, Discrete Math. 309 (2009), no. 10, 3255-3269. MR MR2526744
[24] , Binary codes from the line graph of the n-cube, J. Symbolic Comput. 45 (2010), no. 7, 800-812. MR 2645979
[25] _ Codes from incidence matrices and line graphs of Hamming graphs, Discrete Math. 310 (2010), no. 13-14, 1884-1897. MR 2629907
[26] S. Gao and J. D. Key, Bases of minimum-weight vectors for codes from designs, Finite Fields Appl. 4 (1998), no. 1, 1-15. MR MR1612056 (99k:94057)
[27] D. Ghinelli, M. J. de Resmini, and J. D. Key, Minimum words of codes from affine planes, J. Geom. 91 (2009), no. 1-2, 43-51.
[28] Markus Grassl and T. Aaron Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), no. 1, 57-81. MR MR2496246
[29] Willem H. Haemers, Christopher Parker, Vera Pless, and Vladimir Tonchev, A design and a code invariant under the simple group Co_{3}, J. Combin. Theory Ser. A 62 (1993), no. 2, 225-233. MR MR1207734 (93m:94039)
[30] Masaaki Harada, Self-orthogonal 3- $(56,12,65)$ designs and extremal doubly-even selfdual codes of length 56, Des. Codes Cryptogr. 38 (2006), no. 1, 5-16. MR MR2191121 (2006h:94250)
[31] Masaaki Harada and Vladimir D. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math. 264 (2003), no. 1-3, 81-90, The 2000 Com $^{2} \mathrm{MaC}$ Conference on Association Schemes, Codes and Designs (Pohang). MR MR1972023 (2004f:94099)
[32] K. J. Horadam and P. Udaya, A new class of ternary cocyclic Hadamard codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 1, 65-73. MR MR1989636 (2004j:94034)
[33] J. D. Key, Bases for codes of designs from finite geometries, Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), vol. 102, 1994, pp. 33-44. MR MR1382355 (97c:94018)
[34] _ Some applications of Magma in designs and codes: Oval designs, Hermitian unitals and generalized Reed-Muller codes, J. Symbolic Comput. 31 (2001), no. 12, 37-53, Computational algebra and number theory (Milwaukee, WI, 1996). MR MR1806205 (2002d:94064)
[35] _, Recent developments in permutation decoding, Not. S. Afr. Math. Soc. 37 (2006), no. 1, 2-13. MR MR2223306
[36] J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom. 61 (1998), no. 1-2, 83-104. MR MR1603821 (98k:51024)
[37] , Ternary dual codes of the planes of order nine, J. Statist. Plann. Inference 95 (2001), no. 1-2, 229-236, Special issue on design combinatorics: in honor of S. S. Shrikhande. MR MR1829111 (2002b:94031)
[38] J. D. Key, T. P. McDonough, and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl. 12 (2006), no. 2, 232-247. MR MR2206400 (2006k:94182)
[39] , Partial permutation decoding for codes from affine geometry designs, J. Geom. 88 (2008), no. 1-2, 101-109. MR MR2398478
[40] J. D. Key and J. Moori, Some irreducible codes invariant under the Janko group, J1 or J2, 2008.
[41] J. D. Key, J. Moori, and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, J. Combin. Math. Combin. Comput. 45 (2003), 3-19. MR MR1982631 (2004m:94094)
[42] , Binary codes from graphs on triples, Discrete Math. 282 (2004), no. 1-3, 171-182. MR MR2059517 (2005b:94054)
[43] _, Permutation decoding for the binary codes from triangular graphs, European J. Combin. 25 (2004), no. 1, 113-123. MR MR2031806 (2005c:94086)
[44] , Some binary codes from symplectic geometry of odd characteristic, Util. Math. 67 (2005), 121-128. MR MR2137926 (2006e:94072)
[45] _, Partial permutation decoding of some binary codes from graphs on triples, Ars Combin. 91 (2009), 363-371. MR MR2501975
[46] , Ternary codes from graphs on triples, Discrete Math. 309 (2009), no. 14, 4663-4681. MR MR2533126 (2010e:94298)
[47] J. D. Key, J. Moori, and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding, 2010.
[48] J. D. Key and P. Seneviratne, Permutation decoding for binary codes from lattice graphs, Discrete Math. 308 (2008), no. 13, 2862-2867. MR MR2413986
[49] Jon-Lark Kim and Vera Pless, Designs in additive codes over GF(4), Des. Codes Cryptogr. 30 (2003), no. 2, 187-199. MR MR2007210 (2005b:94067)
[50] Jon-Lark Kim and Patrick Solé, Skew Hadamard designs and their codes, Des. Codes Cryptogr. 49 (2008), no. 1-3, 135-145. MR MR2438446
[51] Heisook Lee and Yoonjin Lee, Construction of self-dual codes over finite rings $Z_{p^{m}}$, J. Combin. Theory Ser. A 115 (2008), no. 3, 407-422. MR MR2402602
[52] Ka Hin Leung and Qing Xiang, On the dimensions of the binary codes of a class of unitals, Discrete Math. 309 (2009), no. 3, 570-575. MR MR2499009
[53] San Ling and Chaoping Xing, Polyadic codes revisited, IEEE Trans. Inform. Theory 50 (2004), no. 1, 200-207. MR MR2051429 (2005a:94106)
[54] Kirsten Mackenzie, Codes of designs, Ph.D. thesis, University of Birmingham, 1989.
[55] Johannes Maks and Juriaan Simonis, Optimal subcodes of second order Reed-Muller codes and maximal linear spaces of bivectors of maximal rank, Des. Codes Cryptogr. 21 (2000), no. 1-3, 165-180. MR MR1801197 (2001j:94049)
[56] Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, NMDS codes of maximal length over $\mathbf{F}_{q}, 8 \leq q \leq 11$, IEEE Trans. Inform. Theory 48 (2002), no. 4, 963-966. MR MR1908457 (2003e:94109)
[57] , Classification of the (n,3)-arcs in $\mathrm{PG}(2,7)$, J. Geom. 80 (2004), no. 1-2, 179-184. MR MR2176579
[58] Gary McGuire and Harold N. Ward, A determination of the weight enumerator of the code of the projective plane of order 5, Note Mat. 18 (1998), no. 1, 71-99 (1999). MR MR1759017 (2001g:94026)
[59] _, The weight enumerator of the code of the projective plane of order 5, Geom. Dedicata 73 (1998), no. 1, 63-77. MR MR1651899 (99j:94068)
[60] Jamshid Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co_{2}, J. Algebra 316 (2007), no. 2, 649-661. MR MR2358607
[61] Akihiro Munemasa and Vladimir D. Tonchev, A new quasi-symmetric 2-(56, 16, 6) design obtained from codes, Discrete Math. 284 (2004), no. 1-3, 231-234. MR MR2071915 (2005b:05027)
[62] Mona B. Musa, On some double circulant binary extended quadratic residue codes, IEEE Trans. Inform. Theory 54 (2008), no. 2, 898-905. MR MR2444570
[63] Christopher Parker and Vladimir D. Tonchev, Linear codes and doubly transitive symmetric designs, Linear Algebra Appl. 226/228 (1995), 237-246. MR MR1344564 (96e:05021)
[64] M. van Dijk, S. Egner, M. Greferath, and A. Wassermann, Geometric codes over fields of odd prime power order, IEEE International Symposium on Information Theory (ISIT), Yokohama, 2003.
[65] Steven R. Weller and Sarah J. Johnson, Iterative decoding of codes from oval designs, Defence Applications of Signal Processing, 2001 Workshop (2001), 1-19.

Codes over Galois Rings

[1] Nuh Aydin, Tsvetan Asamov, and T. Aaron Gulliver, Some open problems on quasitwisted and related code constructions and good quaternary codes, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 856-860.
[2] Christine Bachoc, T. Aaron Gulliver, and Masaaki Harada, Isodual codes over $Z_{2 k}$ and isodual lattices, J. Algebraic Combin. 12 (2000), no. 3, 223-240. MR MR1803233 (2001j:94052)
[3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva, $Z_{2} Z_{4}$-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010), no. 2, 167-179. MR MR2576874
[4] Delphine Boucher, Patrick Solé, and Felix Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273-292. MR MR2429458
[5] Eimear Byrne, Marcus Greferath, and Michael E. O'Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289-301. MR MR2298938 (2008c:94053)
[6] A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_{4} and even unimodular lattices, J. Algebraic Combin. 6 (1997), no. 2, 119-131. MR MR1436530 (97k:94078)
[7] Marcus Greferath and Emanuele Viterbo, On Z_{4} - and Z_{9}-linear lifts of the Golay codes, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2524-2527. MR MR1725143 (2000h:94056)
[8] T. Aaron Gulliver and Masaaki Harada, Optimal double circulant Z_{4}-codes, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Melbourne, 2001), Lecture Notes in Comput. Sci., vol. 2227, Springer, Berlin, 2001, pp. 122-128. MR MR1913458 (2003d:94108)
[9] T. Aaron Gulliver, Patric R. J. Östergård, and Nikolai I. Senkevitch, Optimal quaternary linear rate-1/2 codes of length ≤ 18, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1540-1543. MR MR1984943 (2004f:94097)
[10] Masaaki Harada, Extremal type II Z_{4}-codes of lengths 56 and 64, J. Combin. Theory Ser. A 117 (2010), no. 8, 1285-1288. MR 2677690
[11] Masaaki Harada and Tsuyoshi Miezaki, An upper bound on the minimum weight of type ii-codes, J Combin. Theory Ser. A 118 (2010), no. 1, 190-196.
[12] M. Kiermaier and A. Wassermann, On the minimum Lee distance of quadratic residue codes over Z_{4}, IEEE International Symposium on Information Theory, 2008. ISIT 2008. (2008), 2617-2619.
[13] Jon-Lark Kim and Yoonjin Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247-258. MR MR2341887
[14] J. Pernas, J. Pujol, and M. Villanueva, Kernel dimension for some families of quaternary Reed-Muller codes, Information Security, Lecture Notes in Comput. Sci., vol. 5393, Springer, Berlin, 2008, pp. 128-141.
[15] Patrick Solé and Virgilio Sison, Bounds on the minimum homogeneous distance of the p-ary image of linear block codes over the Galois ring $\mathrm{GR}\left(p^{r}, m\right)$, IEEE Trans. Inform. Theory 53 (2007), no. 6, 2270-2273. MR MR2321881 (2008a:94173)

Low-Density Parity Check Codes

[1] John Brevik and Michael E. O'Sullivan, The performance of LDPC codes with large girth, 2005.
[2] Sean V. Droms, Keith E. Mellinger, and Chris Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr. 40 (2006), no. 3, 343-356. MR MR2251325 (2007f:51021)
[3] M. Greferath, M. O'Sullivan, and R. Smarandache, Construction of good LDPC codes using dilation matrices, Proc. IEEE Intern. Symp. on Inform. Theory, 2004.
[4] Sarah J. Johnson and Steven R. Weller, High-rate LDPC codes from unital designs, IEEE Global Telecommunications Conference 4 (2003), no. 5, 2036-2040.
[5] Christine A. Kelley, Deepak Sridhara, and Joachim Rosenthal, Tree-based construction of LDPC codes having good pseudocodeword weights, IEEE Trans. Inform. Theory 53 (2007), no. 4, 1460-1478. MR MR2303014 (2008b:94133)
[6] Jon-Lark Kim, Uri N. Peled, Irina Perepelitsa, and Vera Pless, Explicit construction of families of LDPC codes with girth at least six, Proceedings of the Annual Allerton Conference on Communication, Control and Computing, vol. 40, Part 2, 2002, pp. 1024-1031.
[7] Jon-Lark Kim, Uri N. Peled, Irina Perepelitsa, Vera Pless, and Shmuel Friedland, Explicit construction of families of LDPC codes with no 4-cycles, IEEE Trans. Inform. Theory 50 (2004), no. 10, 2378-2388. MR MR2097054 (2005e:94285)
[8] Sunghwan Kim, Jong-Seon No, Habong Chung, and Dong-Joon Shin, Cycle analysis and construction of protographs for $Q C(L D P C)$ codes with girth larger than 12, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 2256-2260.
[9] Paul F. Kubwalo and John A. Ryan, Low density parity check irreducible Goppa codes, AFRICON 2007 (2007).
[10] G. Malema, Constructing quasi-cyclic LDPC codes using a search algorithm, 2007 IEEE International Symposium on Signal Processing and Information Technology (2007), 956-960.
[11] Keith E. Mellinger, LDPC codes from triangle-free line sets, Des. Codes Cryptogr. 32 (2004), no. 1-3, 341-350. MR MR2072337 (2005b:94056)
[12] Arvind Sridharan, Design and analysis of LDPC convolutional codes, Ph.D. thesis, University of Notre Dame, Indiana, February 2005.
[13] R. Michael Tanner, Deepak Sridhara, Arvind Sridharan, Thomas E. Fuja, and Daniel J. Costello, Jr., LDPC block and convolutional codes based on circulant matrices, IEEE Trans. Inform. Theory 50 (2004), no. 12, 2966-2984. MR MR2103477 (2005g:94108)
[14] Steven R. Weller and Sarah J. Johnson, Iterative decoding of codes from oval designs, Defence Applications of Signal Processing, 2001 Workshop (2001), 1-19.
[15] Steven R. Weller and Sarah J. Johnson, Regular low-density parity-check codes from oval designs, European Transactions on Telecommunications 14 (2003), no. 5, 399409.

Lattice Codes

94B10

[1] T. L. Alderson and Keith E. Mellinger, 2-dimensional optical orthogonal codes from Singer groups, Discrete Appl. Math. 157 (2009), no. 14, 3008-3019. MR MR2553388
[2] Masaaki Harada, On the existence of frames of the Niemeier lattices and self-dual codes over F_{p}, J. Algebra 321 (2009), no. 8, 2345-2352. MR MR2501524 (2010c:94066)
[3] C. Hollanti, J. Lahtonen, and Hsiao feng Lu, Maximal orders in the design of dense space-time lattice codes, IEEE Transactions on Information Theory 54 (2008), no. 10, 4493-4510.
[4] C. Hollanti, J. Lahtonen, K. Ranto, and R. Vehkalahti, On the densest MIMO lattices from cyclic division algebras, IEEE Trans. Comp. 55 (2009), no. 8, 3751-3780.
[5] Camilla Hollanti, Jyrki Lahtonen, Kalle Ranto, and Roope Vehkalahti, Optimal matrix lattices for MIMO codes from division algebras, IEEE International Symposium on Information Theory. ISIT 2006, July 2006, pp. 783-787.
[6] Camilla Hollanti and Hsiao-Feng Lu, Construction methods for asymmetric multiblock space-time codes, IEEE Trans. Inform. Theory 55 (2009), no. 3, 1086-1103.
[7] Camilla Hollanti and Kalle Ranto, Maximal orders in space-time coding: Construction and decoding, 2008.
[8] Camilla J. Hollanti, Order-theoretic methods for space-time coding: Symmetric and asymmetric designs, PhD Thesis, Turku Centre for Computer Science, 2008.
[9] Jyrki Lahtonen and Camilla Hollanti, A new tool: Constructing STBCs from maximal orders in central simple algebras, IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 2006, 2006.
[10] Roope Vehkalahti, Class field theoretic methods in the design of lattice signal constellations, Ph.D. thesis, University of Turku, 2008, p. 101.

Quantum Error-Correcting Codes

See also Quantum Computation

[1] Salah A. Aly, Andreas Klappenecker, and Kiran Sarvepalli Pradeep, Subsystem codes, IEEE International Symposium on Information Theory, Toronto, Canada, 2008 (ISIT 08), IEEE, New York, 2008, pp. 369-373.
[2] Thomas Beth, Christopher Charnes, Markus Grassl, Gernot Alber, Aldo Delgado, and Michael Mussinger, A new class of designs which protect against quantum jumps, Des. Codes Cryptogr. 29 (2003), no. 1-3, 51-70. MR MR1993156 (2004i:94065)
[3] A. Robert Calderbank, Eric M. Rains, P. W. Shor, and Neil J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 1369-1387. MR MR1665774 (99m:94063)
[4] Andrew W. Cross, David P. DiVincenzo, and Barbara M. Terhal, A comparative code study for quantum fault-tolerance, 2007.
[5] G. David Forney, Jr., Markus Grassl, and Saikat Guha, Convolutional and tail-biting quantum error-correcting codes, IEEE Trans. Inform. Theory 53 (2007), no. 3, 865880. MR MR2302801
[6] David G. Glynn, T. Aaron Gulliver, Johannes G. Maks, and Manish K. Gupta, The geometry of additive quantum codes, Springer, 2006.
[7] M. Grassl, Thomas Beth, and T. Pellizzari, Codes for the quantum erasure channel, Phys. Rev. A (3) 56 (1997), no. 1, 33-38. MR MR1459695 (98f:81044)
[8] M. Grassl, Thomas Beth, and M. Rötteler, On optimal quantum codes, International Journal of Quantum Information 2 (2004), no. 1, 55-64.
[9] Markus Grassl and Thomas Beth, Quantum BCH codes, Proceedings X Symposium on Theoretical Electrical Engineering. Magdeburg, Sept. 6-9, 1999, 1999, pp. 207-212.
[10] Markus Grassl and Martin Rötteler, Quantum block and convolutional codes from self-orthogonal product codes, Proceedings 2005 IEEE International Symposium on Information Theory (ISIT 2005), 2005, pp. 1018-1022.
[11] Markus Grassl and Martin Rötteler, Quantum convolutional codes: Encoders and structural properties, Forty-Fourth Annual Allerton Conference,Allerton House, UIUC, Illinois, USA Sept 27-29, 2006, 2006, pp. 510-519.
[12] Min-Hsiu Hsieh, Igor Devetak, and Todd Brun, General entanglement-assisted quantum error-correcting codes, Physical Review A (Atomic, Molecular, and Optical Physics) 76 (2007), no. 6, 062313.
[13] A. Klappenecker and M. Rötteler, Remarks on Clifford codes, Quantum Information and Computation 4 (2004), no. 2, 152-160.
[14] A. Klappenecker and P. K. Sarvepalli, Clifford code constructions of operator quantum error-correcting codes, IEEE Transactions on Information Theory 54 (2008), no. 12, 5760-5765.
[15] Andreas Klappenecker and Martin Rötteler, Unitary error bases: Constructions, equivalence, and applications, Applied Algebra, Algebraic Algorithms and Errorcorrecting Codes (Toulouse, 2003), Lecture Notes in Comput. Sci., vol. 2643, Springer, Berlin, 2003, pp. 139-149. MR MR2042421 (2005c:94088)
[16] _, On the structure of nonstabilizer Clifford codes, Quantum Inf. Comput. 4 (2004), no. 2, 152-160. MR MR2065357 (2005h:94086)
[17] Annika Niehage, Quantum Goppa codes over hypereliptic curves, Diplomarbeit, Universität Mannheim, 2004.
[18] Annika Niehage, Nonbinary quantum Goppa codes exceeding the quantum GilbertVarshamov bound, Quantum Inf. Process. 6 (2007), no. 3, 143-158. MR MR2341674 (2008e:94055)
[19] Michel Planat, Entangling gates in even Euclidean lattices such as Leech lattice, 2010.
[20] Michel Planat and Philippe Jorrand, Group theory for quantum gates and quantum coherence, J. Phys. A 41 (2008), no. 18, 182001, 8. MR MR2453960 (2009i:81023)
[21] Michel Planat and Maurice R. Kibler, Unitary reflection groups for quantum fault tolerance, J. Comput. Theor. Nanosci. 7 (2010), no. 9, 1759-1770.
[22] M. Rötteler, M. Grassl, and Thomas Beth, On quantum MDS codes, IEEE International Symposium on Information Theory - Proceedings, 2004, p. 355.
[23] Harold N. Ward, An Introduction to Algebraic Coding Theory, Coding Theory and Quantum Computing, Contemp. Math., vol. 381, Amer. Math. Soc., Providence, RI, 2005, pp. 27-52. MR MR2170798 (2006e:94001)

Computational Methods

[1] Tsvetan Asamov and Nuh Aydin, A search algorithm for linear codes: Progressive dimension growth, Des. Codes Cryptogr. 45 (2007), no. 2, 213-217. MR MR2341884
[2] Cesar A. Garcia-Vazquez and Carlos A. Lopez-Andrade, D-Heaps as hash tables for vectors over a finite ring, 2009 WRI World Conference on Computer Science and Information Engineering, WRI World Congress on Computer Science and Information Engineering, vol. 3, IEEE, 2009, pp. 162-166.
[3] Markus Grassl, Searching for linear codes with large minimum distance, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 287-313. MR MR2278933 (2007j:94087)
[4] _ Computing extensions of linear codes, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 476-480.
[5] Greg White and Markus Grassl, A new minimum weight algorithm for additive codes, Proceedings 2006 IEEE International Symposium on Information Theory (ISIT 2006), Seattle, USA, July 2006, IEEE, 2006, pp. 1119-1123.
[6] Gregory White, Enumeration-based Algorithms in Coding Theory, PhD Thesis, University of Sydney, 2007, p. 330.

