- Jianbei An, John J. Cannon, E. A. O'Brien, and W. R. Unger, The Alperin weight conjecture and Dade's conjecture for the simple group Fi24', LMS J. Comput. Math. 11 (2008), 100–145.[MR]
- Jianbei An and E. A. O'Brien, A local strategy to decide the Alperin and Dade conjectures, J. Algebra 206 (1998), no. 1, 183–207.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Fischer simple group Fi23, Internat. J. Algebra Comput. 9 (1999), no. 6, 621–670.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the O'Nan and Rudivalis simple groups, Comm. Algebra 30 (2002), no. 3, 1305–1348.[MR]
- Jianbei An and E. A. O'Brien, Conjectures on the character degrees of the Harada-Norton simple group HN, Israel J. Math. 137 (2003), 157–181.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Conway simple group Co1, Algebr. Represent. Theory 7 (2004), no. 2, 139–158.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Uno conjectures for the Fischer simple group Fi22, Comm. Algebra 33 (2005), no. 5, 1529–1557.[MR]
- Jianbei An, E. A. O'Brien, and R. A. Wilson, The Alperin weight conjecture and Dade's conjecture for the simple group J4, LMS J. Comput. Math. 6 (2003), 119–140 (electronic).[MR]
- Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4 (electronic).[MR]
- Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, A millennium project: Constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644.[MR]
- Stefka Bouyuklieva, E. A. O'Brien, and Wolfgang Willems, The automorphism group of a binary self-dual doubly even [72,36,16] code is solvable, IEEE Trans. Inform. Theory 52 (2006), no. 9, 4244–4248.[MR]
- John Bray, Marston Conder, Charles Leedham-Green, and Eamonn O'Brien, Short presentations for alternating and symmetric groups, Preprint (2006), 24 pages.
- Peter A. Brooksbank and E. A. O'Brien, Constructing the group preserving a system of forms, Internat. J. Algebra Comput. 18 (2008), no. 2, 227–241.[MR]
- Peter A. Brooksbank and E. A. O'Brien, On intersections of classical groups, J. Group Theory 11 (2008), no. 4, 465–478.[MR]
- Timothy C. Burness, E. A. O'Brien, and Robert A. Wilson, Base sizes for sporadic simple groups, Israel J. Math., to appear (2008), 19 pages.
- G. Butler, S. S. Iyer, and E. A. O'Brien, A database of groups of prime-power order, Softw., Pract. Exper. 24 (1994), no. 10, 911-951.
- Alberto Cavicchioli, E. A. O'Brien, and Fulvia Spaggiari, On some questions about a family of cyclically presented groups, J. Algebra 320 (2008), no. 11, 4063–4072.[MR]
- Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A. O'Brien, Generating random elements of a finite group, Comm. Algebra 23 (1995), no. 13, 4931–4948.[MR]
- Marston Conder, C. R. Leedham-Green, and E. A. O'Brien, Constructive recognition of PSL(2,q), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1203–1221 (electronic).[MR]
- Marston Conder, C. Maclachlan, G. J. Martin, and E. A. O'Brien, 2-generator arithmetic Kleinian groups. III, Math. Scand. 90 (2002), no. 2, 161–179.[MR]
- A. S. Detinko, D. L. Flannery, and E. A. O'Brien, Deciding finiteness of matrix groups in positive characteristic, J. Algebra 322 (2009), no. 11, 4151–4160.[MR/doi]
- Bettina Eick, C. R. Leedham-Green, and E. A. O'Brien, Constructing automorphism groups of p-groups, Comm. Algebra 30 (2002), no. 5, 2271–2295.[MR]
- Bettina Eick, M. F. Newman, and E. A. O'Brien, The class-breadth conjecture revisited, J. Algebra 300 (2006), no. 1, 384–393.[MR]
- Bettina Eick and E. A. O'Brien, Enumerating p-groups, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191–205.[MR]
- D. L. Flannery and E. A. O'Brien, Computing 2-cocycles for central extensions and relative difference sets, Comm. Algebra 28 (2000), no. 4, 1939–1955.[MR]
- D. L. Flannery and E. A. O'Brien, Linear groups of small degree over finite fields, Internat. J. Algebra Comput. 15 (2005), no. 3, 467–502.[MR]
- S. P. Glasby, C. R. Leedham-Green, and E. A. O'Brien, Writing projective representations over subfields, J. Algebra 295 (2006), no. 1, 51–61.[MR]
- G. Havas, C. R. Leedham-Green, E. A. O'Brien, and M. C. Slattery, Certain Roman and flock generalized quadrangles have nonisomorphic elation groups, Adv. Geom. 6 (2006), no. 3, 389–395.[MR]
- George Havas, C. R. Leedham-Green, E. A. O'Brien, and Michael C. Slattery, Computing with elation groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 95–102.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, Groups of deficiency zero, Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 53–67.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, On the efficiency of some finite groups, Comm. Algebra 32 (2004), no. 2, 649–656.[MR]
- P. E. Holmes, S. A. Linton, E. A. O'Brien, A. J. E. Ryba, and R. A. Wilson, Constructive membership in black-box groups, J. Group Theory 11 (2008), no. 6, 747–763.[MR]
- Derek F. Holt, Bettina Eick, and Eamonn A. O'Brien, Handbook of Computational Group Theory, Discrete Mathematics and its Applications (Boca Raton), Chapman &Hall/CRC, Boca Raton, FL, 2005, pp. xvi+514.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Computing matrix group decompositions with respect to a normal subgroup, J. Algebra 184 (1996), no. 3, 818–838.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Testing matrix groups for primitivity, J. Algebra 184 (1996), no. 3, 795–817.[MR]
- Derek F. Holt and E. A. O'Brien, A computer-assisted analysis of some matrix groups, J. Algebra 300 (2006), no. 1, 199–212.[MR]
- A. Jaikin-Zapirain, M. F. Newman, and E. A. O'Brien, On p-groups having the minimal number of conjugacy classes of maximal size, Israel J. Math. 172 (2009), 119–123.[MR/doi]
- Rodney James, M. F. Newman, and E. A. O'Brien, The groups of order 128, J. Algebra 129 (1990), no. 1, 136–158.[MR]
- C. R. Leedham-Green and E. A. O'Brien, Recognising tensor-induced matrix groups, J. Algebra 253 (2002), no. 1, 14–30.[MR]
- C. R. Leedham-Green and E. A. O'Brien, Constructive recognition of classical groups in odd characteristic, J. Algebra 322 (2009), no. 3, 833–881.[MR/doi]
- Martin W. Liebeck and E. A. O'Brien, Finding the characteristic of a group of Lie type, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 741–754.[MR]
- Martin W. Liebeck, Aner Shalev, Pham Huu Tiep, and E. A. O'Brien, The Ore conjecture, Preprint (2008).
- F. Lübeck, K. Magaard, and E. A. O'Brien, Constructive recognition of SL3(q), J. Algebra 316 (2007), no. 2, 619–633.[MR]
- Kay Magaard, E. A. O'Brien, and Ákos Seress, Recognition of small dimensional representations of general linear groups, J. Aust. Math. Soc. 85 (2008), no. 2, 229–250.[MR]
- Scott H. Murray and E. A. O'Brien, Selecting base points for the Schreier-Sims algorithm for matrix groups, J. Symbolic Comput. 19 (1995), no. 6, 577–584.[MR]
- M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128, Group Theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 437–442.[MR]
- M. F. Newman and E. A. O'Brien, A computer-aided analysis of some finitely presented groups, J. Austral. Math. Soc. Ser. A 53 (1992), no. 3, 369–376.[MR]
- M. F. Newman and E. A. O'Brien, Application of computers to questions like those of Burnside. II, Internat. J. Algebra Comput. 6 (1996), no. 5, 593–605.[MR]
- M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), no. 1, 131–169.[MR]
- M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), no. 1, 383–401.[MR]
- E. A. O'Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), no. 5-6, 677–698.[MR]
- E. A. O'Brien, The groups of order 256, J. Algebra 143 (1991), no. 1, 219–235.[MR]
- E. A. O'Brien, Isomorphism testing for p-groups, J. Symbolic Comput. 17 (1994), no. 2, 131, 133–147.[MR]
- E. A. O'Brien, Computing automorphism groups of p-groups, Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 83–90.[MR]
- E. A. O'Brien, Towards effective algorithms for linear groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 163–190.[MR]
- E. A. O'Brien and M. R. Vaughan-Lee, The groups with order p7 for odd prime p, J. Algebra 292 (2005), no. 1, 243–258.[MR]
- E. A. O'Brien and Michael Vaughan-Lee, The 2-generator restricted Burnside group of exponent 7, Internat. J. Algebra Comput. 12 (2002), no. 4, 575–592.[MR]