- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 2, 17–20.[MR]
- Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On perfect powers in Lucas sequences, Int. J. Number Theory 1 (2005), no. 3, 309–332.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Sur les nombres de Fibonacci de la forme qkyp, C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327–330.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969–1018.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations II: The Lebesgue-Nagell equation, Compos. Math. 142 (2006), no. 1, 31–62.[MR]
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations, Canad. J. Math. 60 (2008), no. 3, 491–519.[MR/link]
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885.[MR/arXiv]
- Mihai Cipu, Florian Luca, and Maurice Mignotte, Solutions of the Diophantine equation xy+yz+zx = n!, Glasg. Math. J. 50 (2008), no. 2, 217–232.[MR]
- A. Laradji, M. Mignotte, and N. Tzanakis, On px2 + q2n= yp and related Diophantine equations, preprint (2010), 22 pages.[arXiv]