1. Fadwa S. Abu Muriefah, Florian Luca, and Alain Togbé, On the Diophantine equation x2+5a13b=yn, Glasg. Math. J. 50 (2008), no. 1, 175–181.[MR]
  2. Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 2, 17–20.[MR]
  3. Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On perfect powers in Lucas sequences, Int. J. Number Theory 1 (2005), no. 3, 309–332.[MR]
  4. Mihai Cipu, Florian Luca, and Maurice Mignotte, Solutions of the Diophantine equation xy+yz+zx = n!, Glasg. Math. J. 50 (2008), no. 2, 217–232.[MR]
  5. Edray Goins, Florian Luca, and Alain Togbé, On the Diophantine equation x2+2α 5β 13γ=yn, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 430–442.[MR/doi]
  6. E. Herrmann, F. Luca, and P. G. Walsh, A note on the Ramanujan-Nagell equation, Publ. Math. Debrecen 64 (2004), no. 1-2, 21–30.[MR]
  7. F. Luca, P. Stanica, and A. Togbé, On a Diophantine equation of Stroeker, Bull. Belg. Math. Soc. Simon Stevin (2008), 10.
  8. Florian Luca and Alain Togbé, On the Diophantine equation x2+2α13β=yn, Colloq. Math. 116 (2009), no. 1, 139–146.[MR/doi]
  9. Florian Luca and Peter Gareth Walsh, On a sequence of integers arising from simultaneous Pell equations, Funct. Approx. Comment. Math. 38 (2008), no. , part 2, 221–226.[MR/link]
  10. F. S. Abu Muriefah, F. Luca, S. Siksek, and S. Tengely, On the Diophantine equation x2+C=2yn, Int. J. Number Theory (2008).