1. G. D. Cooperman, W. Lempken, G. O. Michler, and M. Weller, A new existence proof of Janko's simple group J4, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 161–175.[MR]
  2. P. Fleischmann, W. Lempken, and A. E. Zalesskii, Linear groups over GF(2k) generated by a conjugacy class of a fixed point free element of order 3, J. Algebra 244 (2001), no. 2, 631–663.[MR]
  3. Mathias Kratzer, Wolfgang Lempken, Gerhard O. Michler, and Katsushi Waki, Another existence and uniqueness proof for McLaughlin's simple group, J. Group Theory 6 (2003), no. 4, 443–459.[MR]
  4. W. Lempken, Constructing J4 in GL(1333,11), Comm. Algebra 21 (1993), no. 12, 4311–4351.[MR]
  5. W. Lempken and R. Staszewski, A construction of \widehat 3McL and some representation theory in characteristic 5, Linear Algebra Appl. 192 (1993), 205–234.[MR]
  6. W. Lempken and R. Staszewski, Some 5-modular representation theory for the simple group McL, Comm. Algebra 21 (1993), no. 5, 1611–1629.[MR]
  7. W. Lempken and R. Staszewski, The structure of the projective indecomposable modules of \hat 3M22 in characteristic 2, Math. Comp. 62 (1994), no. 206, 841–850.[MR]
  8. Wolfgang Lempken, On the existence and uniqueness of the sporadic simple groups J2 and J3 of Z. Janko, J. Group Theory 4 (2001), no. 2, 223–232.[MR]
  9. Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He. II, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 373–380.[MR]
  10. Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He, Illinois J. Math. 47 (2003), no. 1-2, 361–393.[MR]
  11. Wolfgang Lempken, On 2-local amalgams proving existence and uniqueness of McL and 3.McL, Preprint (IEM, Essen. 2002).
  12. Wolfgang Lempken, Two new symmetric 2-(144,66,30) designs, Preprint.
  13. Wolfgang Lempken and Tran van Trung, On minimal logarithmic signatures of finite groups, Experiment. Math. 14 (2005), no. 3, 257–269.[MR]