- John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, Certain classical groups are not well-defined, J. Group Theory 12 (2009), no. 2, 171–180.[MR]
- John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing Sylow subgroups in permutation groups, J. Symbolic Comput. 24 (1997), no. 3-4, 303–316.[MR]
- John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing the subgroups of a permutation group, J. Symbolic Comput. 31 (2001), no. 1-2, 149–161.[MR]
- John J. Cannon and Derek F. Holt, Computing chief series, composition series and socles in large permutation groups, J. Symbolic Comput. 24 (1997), no. 3-4, 285–301.[MR]
- John J. Cannon and Derek F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), no. 3, 241–267.[MR]
- John Cannon and Derek F. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput. 37 (2004), no. 5, 589–609.[MR]
- John J. Cannon and Derek F. Holt, Computing conjugacy class representatives in permutation groups, J. Algebra 300 (2006), no. 1, 213–222.[MR]
- John J. Cannon and Derek F. Holt, The transitive permutation groups of degree 32, Experiment. Math. 17 (2008), no. 3, 307–314.[MR]
- John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel, Computing subgroups of bounded index in a finite group, J. Symbol. Comput. 40 (2005), no. 2, 1013–1022.[MR]
- George Havas and Derek F. Holt, On Coxeter's families of group presentations, J. Algebra 324 (2010), no. 5, 1076–1082.[MR/doi]
- George Havas, Derek F. Holt, P. E. Kenne, and Sarah Rees, Some challenging group presentations, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 206–213.[MR]
- George Havas, Derek F. Holt, and M. F. Newman, Certain cyclically presented groups are infinite, Comm. Algebra 29 (2001), no. 11, 5175–5178.[MR]
- George Havas, Derek F. Holt, and Sarah Rees, Recognizing badly presented Z-modules, Linear Algebra Appl. 192 (1993), 137–163.[MR]
- D. F. Holt, The computation of normalizers in permutation groups, J. Symbolic Comput. 12 (1991), no. 4-5, 499–516.[MR]
- Derek F. Holt, The Meataxe as a tool in computational group theory, The Atlas of Finite Groups: Ten Years On (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 74–81.[MR]
- Derek F. Holt, Computing automorphism groups of finite groups, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 201–208.[MR]
- Derek F. Holt, Cohomology and group extensions in Magma, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 221–241.[MR]
- Derek F. Holt, Bettina Eick, and Eamonn A. O'Brien, Handbook of Computational Group Theory, Discrete Mathematics and its Applications (Boca Raton), Chapman &Hall/CRC, Boca Raton, FL, 2005, pp. xvi+514.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Computing matrix group decompositions with respect to a normal subgroup, J. Algebra 184 (1996), no. 3, 818–838.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Testing matrix groups for primitivity, J. Algebra 184 (1996), no. 3, 795–817.[MR]
- Derek F. Holt and E. A. O'Brien, A computer-assisted analysis of some matrix groups, J. Algebra 300 (2006), no. 1, 199–212.[MR]
- Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1–16.[MR]
- Derek F. Holt and Sarah Rees, Computing with abelian sections of finitely presented groups, J. Algebra 214 (1999), no. 2, 714–728.[MR]
- Derek F. Holt and Colva M. Roney-Dougal, Constructing maximal subgroups of classical groups, LMS J. Comput. Math. 8 (2005), 46–79 (electronic).[MR]
- Derek F. Holt and Mark J. Stather, Computing a chief series and the soluble radical of a matrix group over a finite field, LMS J. Comput. Math. 11 (2008), 223–251.[MR]
- Derek F. Holt and Jacqueline Walton, Representing the quotient groups of a finite permutation group, J. Algebra 248 (2002), no. 1, 307–333.[MR]