- Gilbert Baumslag, Sean Cleary, and George Havas, Experimenting with infinite groups. I, Experiment. Math. 13 (2004), no. 4, 495–502.[MR]
- Colin Campbell, George Havas, Stephen Linton, and Edmund Robertson, Symmetric presentations and orthogonal groups, The Atlas of Finite Groups: Ten Years On (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 1–10.[MR]
- Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math. 7 (2004), 266–283 (electronic).[MR]
- Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math. 16 (2007), no. 3, 347–358.[MR]
- Colin M. Campbell, George Havas, and Edmund F. Robertson, Addendum to: "An elementary introduction to coset table methods in computational group theory", Groups—St. Andrews 1981, London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 2007, pp. 361–364.[MR]
- John Cannon and George Havas, Algorithms for groups, Australian Computer Journal 24 (1992), 51–60.
- Marston Conder, George Havas, and Colin Ramsay, Efficient presentations for the Mathieu simple group M22 and its cover, Finite geometries, groups, and computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 33–41.[MR]
- Robert S. Coulter, George Havas, and Marie Henderson, Giesbrecht's algorithm, the HFE cryptosystem and Ore's ps-polynomials, Computer Mathematics (Matsuyama, 2001), Lecture Notes Ser. Comput, vol. 9, World Sci. Publ., River Edge, NJ, 2001, pp. 36–45.[MR]
- Robert S. Coulter, George Havas, and Marie Henderson, On decomposition of sub-linearised polynomials, J. Aust. Math. Soc. 76 (2004), no. 3, 317–328.[MR/doi]
- Xin Gui Fang, George Havas, and Cheryl E. Praeger, On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222 (1999), no. 1, 271–283.[MR]
- Xin Gui Fang, George Havas, and Jie Wang, Automorphism groups of certain non-quasiprimitive almost simple graphs, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge, 1999, pp. 267–274.[MR]
- G. Havas, C. R. Leedham-Green, E. A. O'Brien, and M. C. Slattery, Certain Roman and flock generalized quadrangles have nonisomorphic elation groups, Adv. Geom. 6 (2006), no. 3, 389–395.[MR]
- George Havas, Coset enumeration strategies, Watt, Stephen M. (ed.), ISSAC '91. Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. Bonn, Germany, July 15–17, 1991. New York, NY: ACM Press, 1991, pp. 191–199.
- George Havas and Derek F. Holt, On Coxeter's families of group presentations, J. Algebra 324 (2010), no. 5, 1076–1082.[MR/doi]
- George Havas, Derek F. Holt, P. E. Kenne, and Sarah Rees, Some challenging group presentations, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 206–213.[MR]
- George Havas, Derek F. Holt, and M. F. Newman, Certain cyclically presented groups are infinite, Comm. Algebra 29 (2001), no. 11, 5175–5178.[MR]
- George Havas, Derek F. Holt, and Sarah Rees, Recognizing badly presented Z-modules, Linear Algebra Appl. 192 (1993), 137–163.[MR]
- George Havas and L. G. Kovács, Distinguishing eleven crossing knots, Computational group theory (Durham, 1982), Academic Press, London, 1984, pp. 367–373.[MR]
- George Havas, C. R. Leedham-Green, E. A. O'Brien, and Michael C. Slattery, Computing with elation groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 95–102.[MR]
- George Havas, Bohdan S. Majewski, and Keith R. Matthews, Extended GCD and Hermite normal form algorithms via lattice basis reduction, Experiment. Math. 7 (1998), no. 2, 125–136.[MR]
- George Havas, Bohdan S. Majewski, and Keith R. Matthews, Addenda and errata: "Extended GCD and Hermite normal form algorithms via lattice basis reduction", Experiment. Math. 8 (1999), no. 2, 205.[MR]
- George Havas, M. F. Newman, Alice C. Niemeyer, and Charles C. Sims, Computing in groups with exponent six, Computational and Geometric Aspects of Modern Algebra, London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 1998, pp. 87–100.
- George Havas, M. F. Newman, Alice C. Niemeyer, and Charles C. Sims, Groups with exponent six, Comm. Algebra 27 (1999), no. 8, 3619–3638.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, Groups of deficiency zero, Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 53–67.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, On the efficiency of some finite groups, Comm. Algebra 32 (2004), no. 2, 649–656.[MR]
- George Havas and Colin Ramsay, Proving a group trivial made easy: A case study in coset enumeration, Bull. Austral. Math. Soc. 62 (2000), no. 1, 105–118.[MR]
- George Havas and Colin Ramsay, Short balanced presentations of perfect groups, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser., vol. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 238–243.[MR]
- George Havas and Colin Ramsay, On proofs in finitely presented groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 457–474.[MR]
- George Havas, J. S. Richardson, and Leon S. Sterling, The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh Sect. A 83 (1979), no. 3-4, 199–203.[MR]
- George Havas and Edmund F. Robertson, Two groups which act on cubic graphs, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 65–68.[MR]
- George Havas and Edmund F. Robertson, Application of computational tools for finitely presented groups, Computational support for discrete mathematics (Piscataway, NJ, 1992), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 15, Amer. Math. Soc., Providence, RI, 1994, pp. 29–39.[MR]
- George Havas and Edmund F. Robertson, Central factors of deficiency zero groups, Comm. Algebra 24 (1996), no. 11, 3483–3487.[MR]
- George Havas, Edmund F. Robertson, and Dale C. Sutherland, Behind and beyond a theorem on groups related to trivalent graphs, J. Aust. Math. Soc. 85 (2008), no. 3, 323–332.
- George Havas and Charles C. Sims, A presentation for the Lyons simple group, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 241–249.[MR]
- George Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Internat. J. Algebra Comput. 15 (2005), no. 4, 649–682.[MR]
- George Havas and M. R. Vaughan-Lee, Computing with 4-Engel groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 475–485.[MR]
- George Havas and Michael Vaughan-Lee, On counterexamples to the Hughes conjecture, J. Algebra 322 (2009), no. 3, 791–801.