1. Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Two-variable identities for finite solvable groups, C. R. Math. Acad. Sci. Paris 337 (2003), no. 9, 581–586.[MR]
  2. Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Identities for finite solvable groups and equations in finite simple groups, Compos. Math. 142 (2006), no. 3, 734–764.[MR]
  3. Tatiana Bandman, Fritz Grunewald, Boris Kunyavskii, and Nathan Jones, Geometry and arithmetic of verbal dynamical systems on simple groups, Groups, Geometry, and Dynamics 4 (2010), no. 4, 607–655.[arXiv]
  4. I. C. Bauer, F. Catanese, and F. Grunewald, The classification of surfaces with pg = q = 0 isogenous to a product of curves, Pure Appl. Math. Q. 4 (2008), no. 2, part 1, 547–586.[MR/arXiv]
  5. Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald, Beauville surfaces without real structures, Geometric Methods in Algebra and Number Theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 1–42.[MR]
  6. Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald, The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type, preprint (2007), 13 pages.[arXiv]
  7. Ingrid Bauer, Fabrizio Catanese, Fritz Grunewald, and Roberto Pignatelli, Quotients of a product of curves by a finite group and their fundamental groups, preprint (2008), 37 pages.[arXiv]
  8. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, On the number of conjugates defining the solvable radical of a finite group, C. R. Math. Acad. Sci. Paris 343 (2006), no. 6, 387–392.[MR]
  9. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A commutator description of the solvable radical of a finite group, Groups Geom. Dyn. 2 (2008), no. 1, 85–120.[MR]
  10. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra 213 (2009), no. 2, 250–258.[MR/doi]
  11. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical, J. Algebra 323 (2010), no. 10, 2888–2904.[arXiv]
  12. Fritz Grunewald and Alexander Lubotzky, Linear representations of the automorphism group of a free group, Geometric and Functional Analysis 18 (2010), no. 5, 1564–1608.[doi/arXiv]