- M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. (3) 92 (2006), no. 2, 273–306.[MR]
- M. J. Bright, N. Bruin, E. V. Flynn, and A. Logan, The Brauer-Manin obstruction and Sh[2], LMS J. Comput. Math. 10 (2007), 354–377 (electronic).[MR]
- N. Bruin and E. V. Flynn, n-covers of hyperelliptic curves, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 397–405.[MR]
- N. Bruin, K. Győry, L. Hajdu, and Sz. Tengely, Arithmetic progressions consisting of unlike powers, Indag. Math. (N.S.) 17 (2006), no. 4, 539–555.[MR]
- Nils Bruin, Visualising Sha[2] in abelian surfaces, Math. Comp. 73 (2004), no. 247, 1459–1476 (electronic).[MR]
- Nils Bruin, The primitive solutions to x3+y9=z2, J. Number Theory 111 (2005), no. 1, 179–189.[MR]
- Nils Bruin, Some ternary Diophantine equations of signature (n,n,2), Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 63–91.[MR]
- Nils Bruin, The arithmetic of Prym varieties in genus 3, Compos. Math. 144 (2008), no. 2, 317–338.[MR/link]
- Nils Bruin and Kevin Doerksen, The arithmetic of genus two curves with (4,4)-split Jacobians, preprint (2010), 22 pages.[arXiv]
- Nils Bruin and Noam D. Elkies, Trinomials ax7 + bx + c and ax8 + bx + c with Galois groups of order 168 and 8·168, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 172–188.[MR]
- Nils Bruin and E. Victor Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347 (electronic).[MR]
- Nils Bruin, E. Victor Flynn, Josep González, and Victor Rotger, On finiteness conjectures for endomorphism algebras of abelian surfaces, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 3, 383–408.[MR/arXiv]
- Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), no. 2, 181–189.[MR/arXiv]
- Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, preprint (2008), 19 pages.[arXiv]
- Nils Bruin and Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math 13 (2010), 272–306.[arXiv]