Number Theory

  1. Kanat Abdukhalikov, Unimodular Hermitian lattices, Mathematisches Forschungsinstitut Oberwolfach Report No. 1/2005 (2005), 27–30.
  2. Kanat Abdukhalikov and Rudolf Scharlau, Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers, Math. Comp. 78 (2009), no. 265, 387–403.[MR]
  3. Fadwa S. Abu Muriefah, Florian Luca, and Alain Togbé, On the Diophantine equation x2+5a13b=yn, Glasg. Math. J. 50 (2008), no. 1, 175–181.[MR]
  4. Fatima K. Abu Salem and Kamal Khuri-Makdisi, Fast Jacobian group operations for C3,4 curves over a large finite field, LMS J. Comput. Math. 10 (2007), 307–328 (electronic).[MR]
  5. Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, 617–636.[MR]
  6. Amod Agashe and William Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171–185.[MR]
  7. Amod Agashe and William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455–484 (electronic).[MR]
  8. Scott Ahlgren, On the irreducibility of Hecke polynomials, Math. Comp. 77 (2008), no. 263, 1725–1731.[MR]
  9. Scott Ahlgren and Ken Ono, Arithmetic of singular moduli and class polynomials, Compos. Math. 141 (2005), no. 2, 293–312.[MR]
  10. Scott Ahlgren and Matthew Papanikolas, Higher Weierstrass points on X0(p), Trans. Amer. Math. Soc. 355 (2003), no. 4, 1521–1535 (electronic).[MR]
  11. Ali Akhavi and Damien Stehlé, Speeding-up lattice reduction with random projections (extended abstract), LATIN 2008: Theoretical informatics, Lecture Notes in Comput. Sci., vol. 4957, Springer, Berlin, 2008, pp. 293–305.[MR]
  12. S. Akhtari, A. Togbé, and P. G. Walsh, On the equation aX4-bY2 = 2, Acta Arith. 131 (2008), no. 2, 145–169.[MR]
  13. Shabnam Akhtari, The diophantine equation aX4 – bY2 = 1, Journal fur die Reine und Angewandte Mathematik, to appear (2009), 20 pages.[arXiv]
  14. Shabnam Akhtari, The method of Thue-Siegel for binary quartic forms, preprint (2009), 35 pages.[arXiv]
  15. Bill Allombert, An efficient algorithm for the computation of Galois automorphisms, Math. Comp. 73 (2004), no. 245, 359–375 (electronic).[MR]
  16. Avner Ash, Jos Brakenhoff, and Theodore Zarrabi, Equality of polynomial and field discriminants, Experiment. Math. 16 (2007), no. 3, 367–374.[MR/link]
  17. Avner Ash, Darrin Doud, and David Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J. 112 (2002), no. 3, 521–579.[MR]
  18. A. O. L. Atkin, Wen-Ching Winnie Li, and Ling Long, On Atkin and Swinnerton-Dyer congruence relations (II), Math. Ann. 340 (2008), no. 2, 335–358.[MR/arXiv]
  19. Roberto Maria Avanzi, Another look at square roots (and other less common operations) in fields of even characteristic, Selected Areas in Cryptography, Lecture Notes in Computer Science, vol. 4876/2007, Springer Berlin / Heidelberg, 2007, pp. 138–154.[eprint]
  20. Huseyin Aydin, Ramazan Dikici, and Geoff C. Smith, Wall and Vinson revisited, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 61–68.[MR]
  21. Eric Bach and Denis Charles, The hardness of computing an eigenform, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 9–15.[MR/arXiv]
  22. Christine Bachoc and Gabriele Nebe, Classification of two genera of 32-dimensional lattices of rank 8 over the Hurwitz order, Experiment. Math. 6 (1997), no. 2, 151–162.[MR]
  23. Christine Bachoc and Boris Venkov, Modular forms, lattices and spherical designs, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 87–111.[MR]
  24. Werner Backes and Susanne Wetzel, Heuristics on lattice basis reduction in practice, ACM J. Exp. Algorithmics 7 (2002), 21 pp. (electronic).[MR]
  25. Werner Backes and Susanne Wetzel, An efficient LLL gram using buffered transformations, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, vol. 4770/2007, Springer Berlin / Heidelberg, 2007, pp. 31–44.
  26. David H. Bailey and Jonathan M. Borwein, Experimental mathematics: Examples, methods and implications, Notices Amer. Math. Soc. 52 (2005), no. 5, 502–514.[MR]
  27. David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor, and Eric W. Weisstein, Ten problems in experimental mathematics, Amer. Math. Monthly 113 (2006), no. 6, 481–509.[MR]
  28. Matthew H. Baker, Enrique González-Jiménez, Josep González, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math. 127 (2005), no. 6, 1325–1387.[MR]
  29. R. D. Baker, G. L. Ebert, K. H. Leung, and Q. Xiang, A trace conjecture and flag-transitive affine planes, J. Combin. Theory Ser. A 95 (2001), no. 1, 158–168.[MR]
  30. Stéphane Ballet, Quasi-optimal algorithms for multiplication in the extensions of \bf F16 of degree 13, 14 and 15, J. Pure Appl. Algebra 171 (2002), no. 2-3, 149–164.[MR]
  31. Arthur Baragar and Ronald van Luijk, K3 surfaces with Picard number three and canonical vector heights, Math. Comp. 76 (2007), no. 259, 1493–1498 (electronic).[MR]
  32. Laurent Bartholdi and Michael R. Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL2(Z3), J. Number Theory 124 (2007), no. 1, 159–166.[MR/arXiv]
  33. Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald, The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type, preprint (2007), 13 pages.[arXiv]
  34. M. Bauer, M. J. Jacobson, Jr., Y. Lee, and R. Scheidler, Construction of hyperelliptic function fields of high three-rank, Math. Comp. 77 (2008), no. 261, 503–530 (electronic).[MR]
  35. Mark Bauer, Edlyn Teske, and Annegret Weng, Point counting on Picard curves in large characteristic, Math. Comp. 74 (2005), no. 252, 1983–2005 (electronic).[MR]
  36. Michael Beck, Eric Pine, Wayne Tarrant, and Kim Yarbrough Jensen, New integer representations as the sum of three cubes, Math. Comp. 76 (2007), no. 259, 1683–1690 (electronic).[MR]
  37. M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. (3) 92 (2006), no. 2, 273–306.[MR]
  38. Michael A. Bennett, The Diophantine equation (xk-1)(yk-1)=(zk-1)t, Indag. Math. (N.S.) 18 (2007), no. 4, 507–525.[MR]
  39. Michael A. Bennett, Kálmán Győry, and Ákos Pintér, On the Diophantine equation 1k+2k+.s+xk=yn, Compos. Math. 140 (2004), no. 6, 1417–1431.[MR]
  40. A. Bérczes, A. Pethő, and V. Ziegler, Parameterized norm form equations with arithmetic progressions, J. Symbolic Comput. 41 (2006), no. 7, 790–810.[MR]
  41. Attila Bérczes and Attila Pethő, Computational experiences on norm form equations with solutions forming arithmetic progressions, Glas. Mat. Ser. III 41(61) (2006), no. 1, 1–8.[MR]
  42. Tobias Berger, An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters, preprint (2007), 26 pages.[arXiv]
  43. Tobias Berger and Krzysztof Klosin, A deformation problem for Galois representations over imaginary quadratic fields, J. Inst. Math. Jussieu 8 (2009), no. 4, 669–692.[MR/doi]
  44. Tobias Berger and Krzysztof Klosin, A deformation problem for Galois representations over imaginary quadratic fields, J. Inst. Math. Jussieu, to appear (2009), 19.
  45. Alexander Berkovich and William C. Jagy, Ternary quadratic forms, modular equations and certain positivity conjectures, The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Springer, New York, 2009, pp. 211–241.[doi]
  46. Daniel J. Bernstein, Batch binary edwards, Advances in Cryptology - CRYPTO 2009, Lecture Notes in Comput. Sci., vol. 5677, Springer, Berlin, 2009, pp. 317–336.[doi]
  47. Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters, Optimizing double-base elliptic-curve single-scalar multiplication, Progress in cryptology—INDOCRYPT 2007, Lecture Notes in Comput. Sci., vol. 4859, Springer, Berlin, 2007, pp. 167–182.[MR/doi]
  48. Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters, ECM using Edwards curves, IACR (2008), 18 pages.[eprint]
  49. Daniel J. Bernstein and Tanja Lange, Faster addition and doubling on elliptic curves, Advances in Cryptology - ASIACRYPT 2007, Lecture Notes in Computer Science, vol. 4833/2007, Springer Berlin / Heidelberg, 2007, pp. 29–50.
  50. Amnon Besser and Rob De Jeu, Li(p)-service? an algorithm for computing p-adic polyalgorithms, Math. Comp. 77 (2008), no. 262, 1105–1134.[MR]
  51. Manjul Bhargava, Higher composition laws I: A new view on Gauss composition, and quadratic generalizations, Ann. of Math. (2) 159 (2004), no. 1, 217–250.[MR]
  52. Peter Birkner, Efficient arithmetic on low-genus curves, PhD Thesis, Technische Universiteit Eindhoven, 2009.
  53. Peter Birkner, Efficient divisor class halving on genus two curves, Selected Areas in Cryptography, Lecture Notes in Computer Science, vol. 4356, Springer, Berlin/Heidelberg, pp. 317–326.[link]
  54. Werner Bley and Robert Boltje, Computation of locally free class groups, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 72–86.[MR/link]
  55. Aart Blokhuis, Robert S. Coulter, Marie Henderson, and Christine M. O'Keefe, Permutations amongst the Dembowski-Ostrom polynomials, Finite fields and applications (Augsburg, 1999), Springer, Berlin, 2001, pp. 37–42.[MR]
  56. Siegfried Boecherer and Gabriele Nebe, On theta series attached to maximal lattices and their adjoints, preprint (2009), 16 pages.[arXiv]
  57. Jonathan Borwein and David Bailey, Mathematics by Experiment, A K Peters Ltd., Natick, MA, 2004, pp. x+288.[MR]
  58. Peter Borwein, Greg Fee, Ron Ferguson, and Alexa van der Waall, Zeros of partial sums of the Riemann zeta function, Experiment. Math. 16 (2007), no. 1, 21–39.[MR/link]
  59. Wieb Bosma, Canonical bases for cyclotomic fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 2, 125–134.[MR]
  60. Wieb Bosma, Explicit primality criteria for h·2k±1, Math. Comp. 61 (1993), no. 203, 97–109.[MR]
  61. Wieb Bosma, Computation of cyclotomic polynomials with Magma, Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 213–225.[MR]
  62. Wieb Bosma, Some computational experiments in number theory, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 1–30.[MR]
  63. Wieb Bosma, John Cannon, and Allan Steel, Lattices of compatibly embedded finite fields, J. Symbolic Comput. 24 (1997), no. 3-4, 351–369.[MR]
  64. Wieb Bosma, Karma Dajani, and Cor Kraaikamp, Entropy quotients and correct digits in number-theoretic expansions, Dynamics and Stochastics, IMS Lecture Notes Monogr. Ser., vol. 48, Inst. Math. Statist., Beachwood, OH, 2006, pp. 176–188.[MR]
  65. Wieb Bosma and Ben Kane, The Aliquot constant, preprint (2009), 16 pages.[arXiv]
  66. Wieb Bosma and Arjen K. Lenstra, An implementation of the elliptic curve integer factorization method, Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 119–136.[MR]
  67. Wieb Bosma and Bart de Smit, Class number relations from a computational point of view, J. Symbolic Comput. 31 (2001), no. 1-2, 97–112.[MR]
  68. Wieb Bosma and Bart de Smit, On arithmetically equivalent number fields of small degree, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 67–79.[MR]
  69. Wieb Bosma and Peter Stevenhagen, Density computations for real quadratic units, Math. Comp. 65 (1996), no. 215, 1327–1337.[MR]
  70. Wieb Bosma and Peter Stevenhagen, On the computation of quadratic 2-class groups, J. Théor. Nombres Bordeaux 8 (1996), no. 2, 283–313.[MR]
  71. Johan Bosman, On the computation of Galois representations associated to level one modular forms, preprint (2007), 15 pages.[arXiv]
  72. Alin Bostan, Pierrick Gaudry, and Éric Schost, Linear recurrences with polynomial coefficients and computation of the Cartier-Manin operator on hyperelliptic curves, Finite Fields and Applications, Lecture Notes in Comput. Sci., vol. 2948, Springer, Berlin, 2004, pp. 40–58.[MR]
  73. Nigel Boston, Galois p-groups unramified at p—a survey, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, 2006, pp. 31–40.[MR]
  74. Nigel Boston, Galois groups of tamely ramified p-extensions, J. Théor. Nombres Bordeaux 19 (2007), no. 1, 59–70.[MR]
  75. Nigel Boston and Rafe Jones, Arboreal Galois representations, Geom. Dedicata 124 (2007), 27–35.[MR]
  76. Nigel Boston and Charles Leedham-Green, Counterexamples to a conjecture of Lemmermeyer, Arch. Math. (Basel) 72 (1999), no. 3, 177–179.[MR]
  77. Hans-Christian Graf v. Bothmer, Finite field experiments (with an appendix by Stefan Wiedmann), Higher-Dimensional Geometry over Finite Fields, NATO Science for Peace and Security Series, D: Information and Communication Security, vol. 16, IOS Press, 2008, pp. 1–62.
  78. Irene I. Bouw and Brian Osserman, Some 4-point Hurwitz numbers in positive characteristic, preprint (2009), 23 pages.[arXiv]
  79. Carl Bracken, Eimear Byrne, Nadya Markin, and Gary McGuire, A few more quadratic APN functions, preprint (2008), 12 pages.[arXiv]
  80. Carl Bracken, Eimear Byrne, Nadya Markin, and Gary McGuire, New families of quadratic almost perfect nonlinear trinomials and multinomials, Finite Fields Appl. 14 (2008), no. 3, 703–714.[MR]
  81. Aaron Bradord, Michael Monagan, and Colin Percival, Integer factorization and computing discrete logarithms in Maple, in Proceedings of the 2006 Maple Conference, 2006, pp. 2–13.
  82. A. Bremner and Jean-Joël Delorme., On equal sums of ninth powers, Math. Comp 79 (2009), 603–612.
  83. A. Bremner and N. Tzanakis, Lucas sequences whose 12th or 9th term is a square, J. Number Theory 107 (2004), no. 2, 215–227.[MR]
  84. A. Bremner and N. Tzanakis, Lucas sequences whose 8th term is a square, preprint (2004), 44 pages.[arXiv]
  85. A. Bremner and N. Tzanakis, On squares in Lucas sequences, J. Number Theory 124 (2007), no. 2, 511–520.[MR]
  86. Andrew Bremner, On the equation Y2=X5 + k, Experiment. Math. 17 (2008), no. 3, 371–374.[MR]
  87. Andrew Bremner, A problem of Ozanam, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 1, 37–44.[MR/doi]
  88. Andrew Bremner and Nikos Tzanakis, On the equation Y2 = X6 + k, Annales des Sciences Mathématiques du Québec, to appear (2010), 23 pages.[arXiv]
  89. Richard P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68 (1999), no. 225, 429–451.[MR]
  90. Richard P. Brent, Recent progress and prospects for integer factorisation algorithms, Computing and Combinatorics (Sydney, 2000), Lecture Notes in Comput. Sci., vol. 1858, Springer, Berlin, 2000, pp. 3–22.[MR]
  91. Richard P. Brent, Note on Marsaglia's xorshift random number generators, J. Stat. Soft 11 (2004), no. 5, 1-5.
  92. Richard P. Brent, Peter L. Montgomery, Herman J. J. te Riele, Henk Boender, Stephania Cavallar, Conrad Curry, Bruce Dodson, Jens Franke, Joseph Leherbauer, George Sassoon, and Robert Silverman, Factorizations of cunningham numbers with bases 13 to 99: millennium edition, Report – Modelling, Analysis and Simulation, vol. 7, Centrum voor Wiskunde en Informatica, Amsterdam, 2001, pp. i-viii, pp. 1-19.
  93. Richard P. Brent and Paul Zimmermann, Ten new primitive binary trinomials, Math. Comp. 78 (2009), no. 266, 1197–1199.[MR]
  94. R. de la Bret'che and T. D. Browning, Manin's conjecture for quartic del Pezzo surfaces with a conic fibration, preprint (2008).[arXiv]
  95. Florian Breuer, Ernest Lötter, and Brink van der Merwe, Ducci-sequences and cyclotomic polynomials, Finite Fields Appl. 13 (2007), no. 2, 293–304.[MR]
  96. M. J. Bright, N. Bruin, E. V. Flynn, and A. Logan, The Brauer-Manin obstruction and Sh[2], LMS J. Comput. Math. 10 (2007), 354–377 (electronic).[MR]
  97. Marcus Brinkmann and Gregor Leander, On the classification of APN functions up to dimension five, Des. Codes Cryptogr. 49 (2008), no. 1-3, 273–288.[MR]
  98. David Brown, The Chabauty-Coleman bound at a prime of bad reduction, preprint (2008), 10 pages.[arXiv]
  99. David Brown, Primitive integral solutions to x2 + y3 = z10, preprint (2009), 11 pages.[arXiv]
  100. Ezra Brown and Bruce T. Myers, Elliptic curves from Mordell to Diophantus and back, Amer. Math. Monthly 109 (2002), no. 7, 639–649.[MR]
  101. Jim Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math. 143 (2007), no. 2, 290–322.[MR]
  102. N. Bruin and E. V. Flynn, n-covers of hyperelliptic curves, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 397–405.[MR]
  103. N. Bruin, K. Győry, L. Hajdu, and Sz. Tengely, Arithmetic progressions consisting of unlike powers, Indag. Math. (N.S.) 17 (2006), no. 4, 539–555.[MR]
  104. Nils Bruin, Visualising Sha[2] in abelian surfaces, Math. Comp. 73 (2004), no. 247, 1459–1476 (electronic).[MR]
  105. Nils Bruin, The primitive solutions to x3+y9=z2, J. Number Theory 111 (2005), no. 1, 179–189.[MR]
  106. Nils Bruin, Some ternary Diophantine equations of signature (n,n,2), Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 63–91.[MR]
  107. Nils Bruin, The arithmetic of Prym varieties in genus 3, Compos. Math. 144 (2008), no. 2, 317–338.[MR/link]
  108. Nils Bruin and Kevin Doerksen, The arithmetic of genus two curves with (4,4)-split Jacobians, preprint (2010), 22 pages.[arXiv]
  109. Nils Bruin and Noam D. Elkies, Trinomials ax7 + bx + c and ax8 + bx + c with Galois groups of order 168 and 8·168, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 172–188.[MR]
  110. Nils Bruin and E. Victor Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347 (electronic).[MR]
  111. Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), no. 2, 181–189.[MR/arXiv]
  112. Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, preprint (2008), 19 pages.[arXiv]
  113. Nils Bruin and Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math 13 (2010), 272–306.[arXiv]
  114. Jan Hendrik Bruinier and Tonghai Yang, CM-values of Hilbert modular functions, Invent. Math. 163 (2006), no. 2, 229-288.
  115. Armand Brumer and Kenneth Kramer, Paramodular abelian varieties of odd conductor, preprint (2010).[arXiv]
  116. Ralph H. Buchholz, Triangles with three rational medians, J. Number Theory 97 (2002), no. 1, 113–131.[MR]
  117. Ralph H. Buchholz and James A. MacDougall, Cyclic polygons with rational sides and area, J. Number Theory 128 (2008), no. 1, 17–48.[MR]
  118. Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 2, 17–20.[MR]
  119. Yann Bugeaud, Florian Luca, Maurice Mignotte, and Samir Siksek, On perfect powers in Lucas sequences, Int. J. Number Theory 1 (2005), no. 3, 309–332.[MR]
  120. Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Sur les nombres de Fibonacci de la forme qkyp, C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327–330.[MR]
  121. Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969–1018.[MR]
  122. Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations II: The Lebesgue-Nagell equation, Compos. Math. 142 (2006), no. 1, 31–62.[MR]
  123. Yann Bugeaud, Maurice Mignotte, and Samir Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations, Canad. J. Math. 60 (2008), no. 3, 491–519.[MR/link]
  124. Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885.[MR/arXiv]
  125. Jessica F. Burkhart, Neil J. Calkin, Shuhong Gao, Justine C. Hyde-Volpe, Kevin James, Hiren Maharaj, Shelly Manber, Jared Ruiz, and Ethan Smith, Finite field elements of high order arising from modular curves, Des. Codes Cryptogr. 51 (2009), no. 3, 301–314.[MR/doi]
  126. M. R. Bush, Computation of Galois groups associated to the 2-class towers of some quadratic fields, J. Number Theory 100 (2003), no. 2, 313–325.[MR]
  127. Cecilia Busuioc, The Steinberg symbol and special values of L-functions, Trans. Amer. Math. Soc. 360 (2008), no. 11, 5999–6015.[MR]
  128. Kevin Buzzard, Questions about slopes of modular forms, Astérisque (2005), no. 298, 1–15.[MR]
  129. Kevin Buzzard and Frank Calegari, A counterexample to the Gouvêa-Mazur conjecture, C. R. Math. Acad. Sci. Paris 338 (2004), no. 10, 751–753.[MR]
  130. Kevin Buzzard and L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space, Compos. Math. 141 (2005), no. 3, 605–619.[MR]
  131. Kevin Buzzard and William A. Stein, A mod five approach to modularity of icosahedral Galois representations, Pacific J. Math. 203 (2002), no. 2, 265–282.[MR]
  132. Nigel P. Byott, James E. Carter, Cornelius Greither, and Henri Johnston, On the restricted hilbert-speiser and leopoldt properties, Illinois J. Math, to appear (2011), 15 pages.[arXiv]
  133. Bryden Cais, Serre's conjectures, Preprint (2005), 21 pages.[link]
  134. Frank Calegari and Nathan M. Dunfield, Automorphic forms and rational homology 3-spheres, Geom. Topol. 10 (2006), 295–329 (electronic).[MR/arXiv]
  135. Frank Calegari and William A. Stein, Conjectures about discriminants of Hecke algebras of prime level, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 140–152.[MR]
  136. I. N. Cangül, M. Demirci, G. Soydan, and N. Tzanakis., On the diophantine equation x2+5a·11b=yn, Funct. Approx. Comment. Math, to appear (2011), 21 pages.[arXiv]
  137. David G. Cantor and Daniel M. Gordon, Factoring polynomials over p-adic fields, Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 185–208.[MR]
  138. Robert Carls, Theta null points of 2-adic canonical lifts, preprint (2005), 18 pages.[arXiv]
  139. Robert Carls, Explicit Frobenius lifts on elliptic curves, preprint (2009), 26 pages.[arXiv]
  140. Robert Carls, Fast point counting on genus two curves in characteristic three, preprint (2010).[arXiv]
  141. Robert Carls and David Lubicz, A p-adic quasi-quadratic time point counting algorithm, Int. Math. Res. Not. IMRN (2009), no. 4, 698–735.[MR/arXiv]
  142. Donald I. Cartwright and Tim Steger, Application of the Bruhat–Tits tree of SU3(h) to some A2 groups, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 329–344.[MR]
  143. Carlos Castaño-Bernard, Further properties of a function of Ogg and Ligozat, Ramanujan J. 17 (2008), no. 1, 107–121.[MR]
  144. Wouter Castryck, Hendrik Hubrechts, and Frederik Vercauteren, Computing zeta functions in families of Ca, b curves using deformation, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 296-311.
  145. Murat Cenk and Ferruh Özbudak, On multiplication in finite fields, J. Complexity 26 (2010), no. 2, 172–186.[doi]
  146. Antoine Chambert-Loir, Compter (rapidement) le nombre de solutions d'equations dans les corps finis, preprint (2006), 46 pages.[arXiv]
  147. Hugo Chapdelaine, Computation of p-units in ray class fields of real quadratic number fields, Math. Comp. 78 (2009), 2307–2345.
  148. Robin Chapman, Steven T. Dougherty, Philippe Gaborit, and Patrick Solé, 2-modular lattices from ternary codes, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 73–85.[MR]
  149. Denis Xavier Charles, Complex multiplication tests for elliptic curves, preprint (2004), 13 pages.[arXiv]
  150. Denis Charles and Kristin Lauter, Computing modular polynomials, LMS J. Comput. Math. 8 (2005), 195–204 (electronic).[MR]
  151. Imin Chen, A Diophantine equation associated to X0(5), LMS J. Comput. Math. 8 (2005), 116–121 (electronic).[MR]
  152. Imin Chen, On the equation s2 + y2p = α3, Math. Comp. 77 (2008), no. 262, 1223–1227.[MR]
  153. Imin Chen and Chris Cummins, Elliptic curves with nonsplit mod 11 representations, Math. Comp. 73 (2004), no. 246, 869–880 (electronic).[MR]
  154. Imin Chen, Ian Kiming, and Jonas B. Rasmussen, On congruences mod pm between eigenforms and their attached Galois representations, J. Number Theory 130 (2010), no. 3, 608–619.[MR/doi]
  155. Imin Chen and Samir Siksek, Perfect powers expressible as sums of two cubes, J. Algebra 322 (2009), no. 3, 638–656.[MR/doi]
  156. C. Chisholm and J. A. MacDougall, Rational and Heron tetrahedra, J. Number Theory 121 (2006), no. 1, 153–185.[MR]
  157. C. Chisholm and J. A. MacDougall, Rational tetrahedra with edges in geometric progression, J. Number Theory 128 (2008), no. 2, 251–262.[MR]
  158. Javier Cilleruelo, The least common multiple of a quadratic sequence, Compositio Mathematica, to appear (2010), 26 pages.[arXiv]
  159. Mihai Cipu, Dickson polynomials that are permutations, Serdica Math. J. 30 (2004), no. 2-3, 177–194.[MR]
  160. Mihai Cipu, Gröbner bases and Diophantine analysis, J. Symbolic Comput. 43 (2008), no. 10, 681–687.[MR]
  161. Mihai Cipu and Stephen D. Cohen, Dickson polynomial permutations, Finite Fields and Applications, Contemporary Mathematics, vol. 461, 2008, 79–91 pages.
  162. Mihai Cipu, Florian Luca, and Maurice Mignotte, Solutions of the Diophantine equation xy+yz+zx = n!, Glasg. Math. J. 50 (2008), no. 2, 217–232.[MR]
  163. H. Cohen, F. Diaz y Diaz, and M. Olivier, Subexponential algorithms for class group and unit computations, J. Symbolic Comput. 24 (1997), no. 3-4, 433–441.[MR]
  164. Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993, pp. xii+534.[MR]
  165. Henri Cohen, A survey of computational class field theory, J. Théor. Nombres Bordeaux 11 (1999), no. 1, 1–13.[MR]
  166. Henri Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000, pp. xvi+578.[MR]
  167. Henri Cohen, Number theory: volume I: tools and diophantine equations, Springer, Berlin, 2007, pp. xxii+650.
  168. Stephen D. Cohen, Finite field elements with specified order and traces, Des. Codes Cryptogr. 36 (2005), no. 3, 331–340.[MR]
  169. Stephen D. Cohen, Primitive polynomials with a prescribed coefficient, Finite Fields Appl. 12 (2006), no. 3, 425–491.[MR]
  170. Robert F. Coleman and William A. Stein, Approximation of eigenforms of infinite slope by eigenforms of finite slope, Geometric Aspects of Dwork Theory. Vol. I, II, Walter de Gruyter GmbH &Co. KG, Berlin, 2004, pp. 437–449.[MR]
  171. B. Conrad, K. Conrad, and H. Helfgott, Root numbers and ranks in positive characteristic, Adv. Math. 198 (2005), no. 2, 684–731.[MR]
  172. Brian Conrad, Bas Edixhoven, and William Stein, J1(p) has connected fibers, Doc. Math. 8 (2003), 331–408 (electronic).[MR]
  173. Caterina Consani and Jasper Scholten, Arithmetic on a quintic threefold, Internat. J. Math. 12 (2001), no. 8, 943–972.[MR/link]
  174. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999, pp. lxxiv+703.[MR]
  175. Patrick Kenneth Corn, Del Pezzo Surfaces and the Brauer-Manin obstruction, PhD Thesis, University of California, Berkley, 1998.
  176. Gunther Cornelissen, Aristides Kontogeorgis, and Lotte van der Zalm, Arithmetic equivalence for function fields, the Goss zeta function and a generalisation, J. Number Theory 130 (2010), no. 4, 1000–1012.[MR/doi]
  177. Gunther Cornelissen, Thanases Pheidas, and Karim Zahidi, Division-ample sets and the Diophantine problem for rings of integers, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 727–735.[MR]
  178. R. Coulangeon, M. I. Icaza, and M. O'Ryan, Lenstra's constant and extreme forms in number fields, Experiment. Math. 16 (2007), no. 4, 455–462.[MR/link]
  179. Robert S. Coulter, George Havas, and Marie Henderson, Giesbrecht's algorithm, the HFE cryptosystem and Ore's ps-polynomials, Computer Mathematics (Matsuyama, 2001), Lecture Notes Ser. Comput, vol. 9, World Sci. Publ., River Edge, NJ, 2001, pp. 36–45.[MR]
  180. Robert S. Coulter, George Havas, and Marie Henderson, On decomposition of sub-linearised polynomials, J. Aust. Math. Soc. 76 (2004), no. 3, 317–328.[MR/doi]
  181. Robert S. Coulter and Marie Henderson, The compositional inverse of a class of permutation polynomials over a finite field, Bull. Austral. Math. Soc. 65 (2002), no. 3, 521–526.[MR]
  182. Robert S. Coulter, Marie Henderson, and Felix Lazebnik, On certain combinatorial Diophantine equations and their connection to Pythagorean numbers, Acta Arith. 122 (2006), no. 4, 395–406.[MR]
  183. Jean-Marc Couveignes and Reynald Lercier, Elliptic periods for finite fields, Finite Fields Appl. 15 (2009), no. 1, 1–22.[MR/doi]
  184. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, 1997, pp. vi+376.[MR]
  185. J. E. Cremona, Unimodular integer circulants, Math. Comp. 77 (2008), no. 263, 1639–1652.[MR]
  186. J. E. Cremona, T. A. Fisher, C. O'Neil, D. Simon, and M. Stoll, Explicit n-descent on elliptic curves. I. Algebra, J. reine angew. Math. 615 (2008), 121–155.[MR]
  187. J. E. Cremona, T. A. Fisher, C. O'Neil, D. Simon, and M. Stoll, Explicit n-descent on elliptic curves, II: Geometry, J. reine angew. Math 2009 (2009), no. 632, 63–84.[arXiv]
  188. J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra and Number Theory 4 (2010), no. 6, 763–820.[arXiv]
  189. J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math. 16 (2007), no. 3, 303–312.[MR]
  190. J. E. Cremona, M. Prickett, and Samir Siksek, Height difference bounds for elliptic curves over number fields, J. Number Theory 116 (2006), no. 1, 42–68.[MR]
  191. J. E. Cremona and D. Rusin, Efficient solution of rational conics, Math. Comp. 72 (2003), no. 243, 1417–1441 (electronic).[MR]
  192. John E. Cremona, A solution for note 84.35, The Mathematical Gazette 86 (2002), no. 505, 66–68.[link]
  193. John Cremona, The elliptic curve database for conductors to 130000, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 11–29.[MR]
  194. John Cullinan, A computational approach to the 2-torsion structure of abelian threefolds, Math. Comp. 78 (2009), no. 267, 1825–1836.[MR]
  195. C. J. Cummins, Congruence subgroups of groups commensurable with PSL(2,Z) of genus 0 and 1, Experiment. Math. 13 (2004), no. 3, 361–382.[MR]
  196. C. J. Cummins, On conjugacy classes of congruence subgroups of PSL(2,R), LMS J. Comput. Math. 12 (2009), 264–274.[MR/doi]
  197. C. J. Cummins and S. Pauli, Congruence subgroups of PSL(2,Z) of genus less than or equal to 24, Experiment. Math. 12 (2003), no. 2, 243–255.[MR]
  198. M. Daberkow, Computing with subfields, J. Symbolic Comput. 24 (1997), no. 3-4, 371–384.[MR]
  199. M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283.[MR]
  200. Henri Darmon and Robert Pollack, Efficient calculation of Stark-Heegner points via overconvergent modular symbols, Israel J. Math. 153 (2006), 319–354.[MR]
  201. Samit Dasgupta, Computations of elliptic units for real quadratic fields, Canad. J. Math. 59 (2007), no. 3, 553–574.[MR]
  202. Chantal David and Tom Weston, Local torsion on elliptic curves and the deformation theory of Galois representations, Math. Res. Lett. 15 (2008), no. 3, 599–611.[MR/arXiv]
  203. Christophe Delaunay and Christian Wuthrich, Self-points on elliptic curves of prime conductor, Int. J. Number Theory 5 (2009), no. 5, 911–932.[MR/doi]
  204. Daniel Delbourgo and Thomas Ward, The growth of CM periods over false Tate extensions, Experiment. Math. 19 (2010), no. 2, 195–210.[MR/link]
  205. Daniel Delbourgo and Tom Ward, Non-abelian congruences between L-values of elliptic curves, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 1023–1055.[MR/link]
  206. Lassina Dembélé, Explicit computations of Hilbert modular forms on Q(√5), Experiment. Math. 14 (2005), no. 4, 457–466.[MR]
  207. Lassina Dembélé, Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057 (electronic).[MR]
  208. Lassina Dembélé, A non-solvable Galois extension of Q ramified at 2 only, C. R. Math. Acad. Sci. Paris 347 (2009), no. 3-4, 111–116.[MR/doi]
  209. Lassina Dembélé, On the computation of algebraic modular forms on compact inner forms of GSp4, preprint (2009), 21 pages.[arXiv]
  210. Lassina Dembélé and Steve Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 371–386.[MR/doi]
  211. Lassina Dembele, Matthew Greenberg, and John Voight, Nonsolvable number fields ramified only at 3 and 5, preprint (2009), 18 pages.[arXiv]
  212. Jan Denef and Frederik Vercauteren, An extension of Kedlaya's algorithm to Artin-Schreier curves in characteristic 2, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 308–323.[MR]
  213. Xavier Charles Denis, Complex multiplication tests for elliptic curves, Preprint (2004), 13 pages.
  214. Tobias Dern and Aloys Krieg, Graded rings of Hermitian modular forms of degree 2, Manuscripta Math. 110 (2003), no. 2, 251–272.[MR]
  215. Tobias Dern and Aloys Krieg, The graded ring of Hermitian modular forms of degree 2 over Q(√-2), J. Number Theory 107 (2004), no. 2, 241–265.[MR]
  216. Michael Dewar and Olav K. Richter, Ramanujan congruences for Siegel modular forms, preprint (2009), 11 pages.[arXiv]
  217. Meghan DeWitt and Darrin Doud, Finding Galois representations corresponding to certain Hecke eigenclasses, Int. J. Number Theory 5 (2009), no. 1, 1–11.[MR/doi]
  218. Francisco Diaz y Diaz, Jean-François Jaulent, Sebastian Pauli, Michael Pohst, and Florence Soriano-Gafiuk, A new algorithm for the computation of logarithmic l-class groups of number fields, Experiment. Math. 14 (2005), no. 1, 65–74.[MR]
  219. Claus Diem, The GHS attack in odd characteristic, J. Ramanujan Math. Soc. 18 (2003), no. 1, 1–32.[MR]
  220. Claus Diem, Index calculus in class groups of plane curves of small degree, Preprint (2005), 43 pages.
  221. Claus Diem, An index calculus algorithm for plane curves of small degree, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 543–557.[MR]
  222. Claus Diem and Emmanuel Thomé, Index calculus in class groups of non-hyperelliptic curves of genus three, J. Cryptology 21 (2008), no. 4, 593–611.[MR]
  223. Luis V. Dieulefait, Solving Diophantine equations x4+y4=qzp, Acta Arith. 117 (2005), no. 3, 207–211.[MR]
  224. Luis Dieulefait, E. Gonzalez-Jimenez, and J. Jimenez Urroz, On fields of definition of torsion points of elliptic curves with complex multiplication, preprint (2009).[arXiv]
  225. Luis Dieulefait and Xavier Taixes i Ventosa, Congruences between modular forms and lowering the level mod ln, Journal de Theorie des Nombres de Bordeaux 31 (2009), no. 1, 109–118.[arXiv]
  226. Vassil S. Dimitrov and Everett W. Howe, Lower bounds on the lengths of double-base representations, preprint 2010, 8 pages.[arXiv]
  227. Jintai Ding, Jason E. Gower, and Dieter S. Schmidt, Zhuang-Zi: a new algorithm for solving multivariate polynomial equations over a finite field, Preprint (2006), 14 pages.[link]
  228. Shanshan Ding, Smallest irreducible of the form x2-dy2, Int. J. Number Theory (2007), 7 pages.
  229. T. Dokchitser and V. Dokchitser, Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3) 94 (2007), no. 1, 211–272.[MR/doi]
  230. Tim Dokchitser and Vladimir Dokchitser, Root numbers of elliptic curves in residue characteristic 2, Bull. Lond. Math. Soc. 40 (2008), no. 3, 516–524.[MR]
  231. Tim Dokchitser and Vladimir Dokchitser, A note on the Mordell-Weil rank modulo n, preprint (2009), 7 pages.[arXiv]
  232. Darrin Doud, A procedure to calculate torsion of elliptic curves over Q, Manuscripta Math. 95 (1998), no. 4, 463–469.[MR]
  233. Darrin Doud, Three-dimensional Galois representations with conjectural connections to arithmetic cohomology, Number Theory for the Millennium I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 365–375.[MR]
  234. Darrin Doud, Supersingular Galois representations and a generalization of a conjecture of Serre, Experiment. Math. 16 (2007), no. 1, 119–128.[MR/link]
  235. Darrin Doud, Distinguishing contragredient Galois representations in characteristic two, Rocky Mountain J. Math. 38 (2008), no. 3, 835–848.[MR]
  236. Darrin Doud and Brian Hansen, Explicit Frobenius calculations supporting a generalization of a conjecture of Serre, JP J. Algebra Number Theory Appl. 6 (2006), no. 2, 381–398.[MR/link]
  237. Konstantinos A. Draziotis, Integer points on the curve Y2=X3±pkX, Math. Comp. 75 (2006), no. 255, 1493–1505 (electronic).[MR]
  238. Konstantinos Draziotis and Dimitrios Poulakis, Practical solution of the Diophantine equation y2=x(x+2apb)(x-2apb), Math. Comp. 75 (2006), no. 255, 1585–1593 (electronic).[MR]
  239. Konstantinos Draziotis and Dimitrios Poulakis, Corrigendum to "Solving the Diophantine equation y2=x(x2-n2)" [J. Number Theory 129 (1) (2009) 102–121] [mr2468473], J. Number Theory 129 (2009), no. 3, 739–740.[MR/doi]
  240. Konstantinos Draziotis and Dimitrios Poulakis, Solving the Diophantine equation y2=x(x2-n2), J. Number Theory 129 (2009), no. 1, 102–121.[MR/doi]
  241. H. Dubner, T. Forbes, N. Lygeros, M. Mizony, H. Nelson, and P. Zimmermann, Ten consecutive primes in arithmetic progression, Math. Comp. 71 (2002), no. 239, 1323–1328 (electronic).[MR]
  242. Jacques Dubrois and Jean-Guillaume Dumas, Efficient polynomial time algorithms computing industrial-strength primitive roots, Inform. Process. Lett. 97 (2006), no. 2, 41–45.[MR]
  243. Andrej Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42(62) (2007), no. 1, 3–18.[MR/arXiv]
  244. Neil Dummigan, William Stein, and Mark Watkins, Constructing elements in Shafarevich-Tate groups of modular motives, Number Theory and Algebraic Geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 91–118.[MR]
  245. S. Duquesne, Rational points on hyperelliptic curves and an explicit Weierstrass preparation theorem, Manuscripta Math. 108 (2002), no. 2, 191–204.[MR]
  246. Sylvain Duquesne, Points rationnels et méthode de Chabauty elliptique, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 99–113.[MR]
  247. Sylvain Duquesne, Elliptic curves associated with simplest quartic fields, J. Théor. Nombres Bordeaux 19 (2007), no. 1, 81–100.[MR]
  248. Sylvain Duquesne, Montgomery ladder for all genus 2 curves in characteristic 2, Arithmetic of Finite Fields, Lecture Notes in Computer Science, vol. 5130, Springer, 2008, pp. 174–188.
  249. Sylvain Duquesne, Traces of the group law on the Kummer surface of a curve of genus 2 in characteristic 2, Math. Comput. Sci. 3 (2010), no. 2, 173–183.
  250. Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, A generalization of Voronoi's reduction theory and its application, Duke Math. J. 142 (2008), no. 1, 127–164.[MR/arXiv]
  251. I. Duursma, P. Gaudry, and F. Morain, Speeding up the discrete log computation on curves with automorphisms, Advances in Cryptology—Asiacrypt'99 (Singapore), Lecture Notes in Comput. Sci., vol. 1716, Springer, Berlin, 1999, pp. 103–121.[MR]
  252. Yves Edel and Alexander Pott, A new almost perfect nonlinear function which is not quadratic, Adv. Math. Commun. 3 (2009), no. 1, 59–81.[MR/doi]
  253. Bas Edixhoven, Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms mod 2 of weight one, J. Inst. Math. Jussieu 5 (2006), no. 1, 1–34.[MR]
  254. Bas Edixhoven, On the computation of the coefficients of a modular form, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 30–39.[MR]
  255. Kirsten Eisentraeger, Dimitar Jetchev, and Kristin Lauter, On the computation of the Cassels pairing for certain Kolyvagin classes in the Shafarevich-Tate group, preprint 5209 (2008), 113–125.
  256. Kirsten Eisenträger and Kristin Lauter, Computing Igusa class polynomials via the chinese remainder theory, preprint (2004).[arXiv]
  257. Kirsten Eisenträger and Kristin Lauter, A CRT algorithm for constructing genus 2 curves over finite fields, preprint (2007), 16 pages.[arXiv]
  258. Noam D. Elkies, Three lectures on elliptic surfaces and curves of high rank, preprint (2007), 14 pages.[arXiv]
  259. Noam D. Elkies, Shimura curve computations via K3 surfaces of Neron-Severi rank at least 19, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 196-211.[arXiv]
  260. Noam D. Elkies and Mark Watkins, Elliptic curves of large rank and small conductor, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 42–56.[MR]
  261. Arsen Elkin, Hyperelliptic Jacobians with real multiplication, J. Number Theory 117 (2006), no. 1, 53–86.[MR]
  262. Jordan S. Ellenberg and Akshay Venkatesh, The number of extensions of a number field with fixed degree and bounded discriminant, Ann. of Math. (2) 163 (2006), no. 2, 723–741.[MR]
  263. Andreas-Stephan Elsenhans and Jörg Jahnel, K3 surfaces of Picard rank one and degree two, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 212–225.
  264. Ronald Evans, Henk D. L. Hollmann, Christian Krattenthaler, and Qing Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A 87 (1999), no. 1, 74–119.[MR]
  265. G. Everest and T. Ward, The canonical height of an algebraic point on an elliptic curve, New York J. Math. 6 (2000), 331–342 (electronic).[MR]
  266. Graham Everest, Patrick Ingram, Valéry Mahé, and Shaun Stevens, The uniform primality conjecture for elliptic curves, Acta Arith. 134 (2008), no. 2, 157–181.[MR/arXiv]
  267. Graham Everest, Patrick Ingram, and Shaun Stevens, Primitive divisors on twists of Fermat's cubic, LMS J. Comput. Math. 12 (2009), 54–81.[MR/arXiv]
  268. Graham Everest and Valéry Mahé, A generalization of Siegel's theorem and Hall's conjecture, Experiment. Math. 18 (2009), no. 1, 1–9.[MR/arXiv]
  269. Graham Everest, Ouamporn Phuksuwan, and Shaun Stevens, The uniform primality conjecture for the twisted Fermat cubic, preprint (2010), 21 pages.[arXiv]
  270. Xander Faber and Benjamin Hutz, On the number of rational iterated pre-images of the origin under quadratic dynamical systems, preprint (2008), 18 pages.[arXiv]
  271. Liqun Fang, J. William Hoffman, Benjamin Linowitz, Andrew Rupinski, and Helena Verrill, Modular forms on noncongruence subgroups and Atkin-Swinnerton-Dyer relations, Experiment. Math. 19 (2010), no. 1, 1–27.[arXiv]
  272. Reza Rezaeian Farashahi and Ruud Pellikaan, The quadratic extension extractor for (hyper)elliptic curves in odd characteristic, Arithmetic of finite fields, Lecture Notes in Comput. Sci., vol. 4547, Springer, Berlin, 2007, pp. 219–236.[MR]
  273. Luca De Feo, Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic, J. Number Theory, to appear (2010), 21 pages.[arXiv]
  274. Julio Fernández, Josep González, and Joan-C. Lario, Plane quartic twists of X(5,3), Canad. Math. Bull. 50 (2007), no. 2, 196–205.[MR]
  275. C. Fieker and M. E. Pohst, On lattices over number fields, Algorithmic Number Theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 133–139.[MR]
  276. Claus Fieker, Applications of the class field theory of global fields, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 31–62.[MR]
  277. Claus Fieker, Sparse representation for cyclotomic fields, Experiment. Math. 16 (2007), no. 4, 493–500.[MR]
  278. Claus Fieker, Minimizing representations over number fields II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752–765.[MR/doi]
  279. Claus Fieker and Willem A. de Graaf, Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras, LMS J. Comput. Math. 10 (2007), 271–287 (electronic).[MR]
  280. Claus Fieker and Michael E. Pohst, Dependency of units in number fields, Math. Comp. 75 (2006), no. 255, 1507–1518 (electronic).[MR]
  281. Claus Fieker and Michael E. Pohst, A lower regulator bound for number fields, J. Number Theory 128 (2008), no. 10, 2767–2775.[MR]
  282. Luís R. A. Finotti, Degrees of the elliptic Teichmüller lift, J. Number Theory 95 (2002), no. 2, 123–141.[MR]
  283. Luís R. A. Finotti, Minimal degree liftings of hyperelliptic curves, J. Math. Sci. Univ. Tokyo 11 (2004), no. 1, 1–47.[MR]
  284. Luís R. A. Finotti, Minimal degree liftings in characteristic 2, J. Pure Appl. Algebra 207 (2006), no. 3, 631–673.[MR]
  285. Luís R. A. Finotti, Lifting the j-invariant: Questions of Mazur and Tate, J. Number Theory 130 (2010), no. 3, 620–638.[doi]
  286. Tom Fisher, Testing equivalence of ternary cubics, Algorithmic Number Theory (Berlin, 2006), Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 333–345.[MR]
  287. Tom Fisher, The Hessian of a genus one curve, preprint (2006), 28 pages.[arXiv]
  288. Tom Fisher, A new approach to minimising binary quartics and ternary cubics, Math. Res. Lett. 14 (2007), no. 4, 597–613.[MR/link]
  289. Tom Fisher, Some improvements to 4-descent on an elliptic curve, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 125–138.[MR/doi]
  290. Tom Fisher, The invariants of a genus one curve, Proc. Lond. Math. Soc. (3) 97 (2008), no. 3, 753–782.[MR/arXiv]
  291. E. V. Flynn, The Hasse principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), no. 4, 437–466.[MR]
  292. E. V. Flynn and C. Grattoni, Descent via isogeny on elliptic curves with large rational torsion subgroups, J. Symbolic Comput. 43 (2008), no. 4, 293–303.[MR]
  293. E. V. Flynn and J. Wunderle, Cycles of covers, Monatsh. Math. Online first (2008), 16.
  294. Felix Fontein, The infrastructure of a global field of arbitrary unit rank, preprint (2008), 36 pages.[arXiv]
  295. David Ford, Sebastian Pauli, and Xavier-François Roblot, A fast algorithm for polynomial factorization over Qp, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 151–169.[MR]
  296. Robert Fraatz, Computation of maximal orders of cyclic extensions of function fields, PhD Thesis, Technischen Universtät Berlin, 2005.
  297. Robert Fraatz, On the computation of integral closures of cyclic extensions of function fields, LMS J. Comput. Math. 10 (2007), 141–160 (electronic).[MR]
  298. Sharon M. Frechette, A classical characterization of newforms with equivalent eigenforms in Sk+1/2(4N,χ), J. London Math. Soc. (2) 68 (2003), no. 3, 563–578.[MR]
  299. David Freeman, Constructing pairing-friendly genus 2 curves with ordinary Jacobians, Pairing-based cryptography—Pairing 2007, Lecture Notes in Comput. Sci., vol. 4575, Springer, Berlin, 2007, pp. 152-176.[MR]
  300. David Mandell Freeman and Takakazu Satoh, Constructing pairing-friendly hyperelliptic curves using Weil restriction, Preprint (2010), 1–31.[link]
  301. David Freeman, Peter Stevenhagen, and Marco Streng, Abelian varieties with prescribed embedding degree, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 60-73.[arXiv]
  302. E. Freitag and R. Salvati Manni, Some Siegel threefolds with a Calabi-Yau model II, preprint (2010), 23 pages.[arXiv]
  303. Eberhard Freitag and Manabu Oura, A theta relation in genus 4, Nagoya Math. J. 161 (2001), 69–83.[MR]
  304. Philippe Gaborit, Construction of new extremal unimodular lattices, European J. Combin. 25 (2004), no. 4, 549–564.[MR]
  305. S. D. Galbraith, J. F. McKee, and P. C. Valença, Ordinary abelian varieties having small embedding degree, Finite Fields Appl. 13 (2007), no. 4, 800–814.[MR]
  306. Steven D. Galbraith, Weil descent of Jacobians, Discrete Appl. Math. 128 (2003), no. 1, 165–180.[MR]
  307. Kseniya Garaschuk, On binary and ternary Kloosterman sums, PhD Thesis, Simon Fraser University, 2007.
  308. Irene García-Selfa, Enrique González-Jiménez, and José M. Tornero, Galois theory, discriminants and torsion subgroup of elliptic curves, J. Pure Appl. Algebra 214 (2010), no. 8, 1340–1346.[MR/doi]
  309. Sharon Anne Garthwaite, Convolution congruences for the partition function, Proc. Amer. Math. Soc. 135 (2007), no. 1, 13–20 (electronic).[MR]
  310. F. G. Garvan, Biranks for partitions into 2 colors, preprint (2009), 20 pages.[arXiv]
  311. P. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil descent on elliptic curves, J. Cryptology 15 (2002), no. 1, 19–46.[MR]
  312. P. Gaudry and É. Schost, Modular equations for hyperelliptic curves, Math. Comp. 74 (2005), no. 249, 429–454 (electronic).[MR]
  313. Pierrick Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves, Advances in Cryptology—Eurocrypt 2000 (Bruges), Lecture Notes in Comput. Sci., vol. 1807, Springer, Berlin, 2000, pp. 19–34.[MR]
  314. Pierrick Gaudry, Index calculus for abelian varieties and the elliptic curve discrete logarithm problem, Preprint (2004), 13 pages.
  315. Pierrick Gaudry and Nicolas Gürel, An extension of Kedlaya's point-counting algorithm to superelliptic curves, Advances in Cryptology—Asiacrypt 2001 (Gold Coast), Lecture Notes in Comput. Sci., vol. 2248, Springer, Berlin, 2001, pp. 480–494.[MR]
  316. Pierrick Gaudry and Robert Harley, Counting points on hyperelliptic curves over finite fields, Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 313–332.[MR]
  317. Pierrick Gaudry, Alexander Kruppa, and Paul Zimmermann, A GMP-based implementation of Schönhage-Strassen's large integer multiplication algorithm, ISSAC 2007, ACM, New York, 2007, pp. 167–174.[MR]
  318. Willi Geiselmann, Jörn Müller-Quade, and Rainer Steinwandt, Comment on: "A new representation of elements of finite fields GF(2m) yielding small complexity arithmetic circuits" by G. Drolet, IEEE Trans. Comput. 51 (2002), no. 12, 1460–1461.[MR]
  319. Willi Geiselmann and Rainer Steinwandt, A redundant representation of GF(qn) for designing arithmetic circuits, IEEE Trans. Comp 52 (2003), no. 7, 848–853.
  320. Willi Geiselmann and Rainer Steinwandt, Non-wafer-scale sieving hardware for the NFS: another attempt to cope with 1024-bit, Advances in cryptology—EUROCRYPT 2007, Lecture Notes in Comput. Sci., vol. 4515, Springer, Berlin, 2007, pp. 466–481.[MR/link]
  321. Ralf Gerkmann, Relative rigid cohomology and deformation of hypersurfaces, Int. Math. Res. Pap. IMRP (2007), no. 1, Art. ID rpm003, 67.[MR]
  322. Eknath Ghate, Enrique González-Jiménez, and Jordi Quer, On the Brauer class of modular endomorphism algebras, Int. Math. Res. Not. (2005), no. 12, 701–723.[MR]
  323. Jean Gillibert, Invariants de classes: exemples de non-annulation en dimension supérieure, Math. Ann. 338 (2007), no. 2, 475–495.[MR]
  324. Martine Girard and Leopoldo Kulesz, Computation of sets of rational points of genus-3 curves via the Demjanenko-Manin method, LMS J. Comput. Math. 8 (2005), 267–300 (electronic).[MR]
  325. S. P. Glasby, Generators for the group of units of Zn, Austral. Math. Soc. Gaz. 22 (1995), no. 5, 226–228.[MR]
  326. Norbert Goeb, Computing the automorphism groups of hyperelliptic function fields, preprint (2003), 16 pages.[arXiv]
  327. Edray Goins, Explicit descent via 4-isogeny on an elliptic curve, preprint (2004), 20 pages.[arXiv]
  328. Edray Goins, On the modularity of wildly ramified Galois representations, preprint (2004), 31 pages.[arXiv]
  329. Edray Goins, Florian Luca, and Alain Togbé, On the Diophantine equation x2+2α 5β 13γ=yn, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 430–442.[MR/doi]
  330. Josep González and Jordi Guàrdia, Genus two curves with quaternionic multiplication and modular Jacobian, Math. Comp. 78 (2009), no. 265, 575–589.[MR]
  331. Josep González, Jordi Guàrdia, and Victor Rotger, Abelian surfaces of GL2-type as Jacobians of curves, Acta Arith. 116 (2005), no. 3, 263–287.[MR]
  332. Josep González and Victor Rotger, Non-elliptic Shimura curves of genus one, J. Math. Soc. Japan 58 (2006), no. 4, 927–948.[MR]
  333. Enrique González-Jiménez, Josep González, and Jordi Guàrdia, Computations on modular Jacobian surfaces, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 189–197.[MR]
  334. Enrique Gonzalez-Jimenez and Xavier Guitart, On the modularity level of modular abelian varieties over number fields, J. Number Theory 130 (2010), no. 7, 1560–1570.[arXiv]
  335. Enrique González-Jiménez and Roger Oyono, Non-hyperelliptic modular curves of genus 3, J. Number Theory 130 (2010), no. 4, 862–878.[MR/doi]
  336. Enrique Gonzalez-Jimenez and Xavier Xarles, Five squares in arithmetic progression over quadratic fields, preprint (2009), 24 pages.[arXiv]
  337. Enrique Gonzalez-Jimenez and Xavier Xarles, On symmetric square values of quadratic polynomials, preprint (2010).[arXiv]
  338. Eyal Z. Goren and Kristin E. Lauter, The distance between superspecial abelian varieties with real multiplication, J. Number Theory 129 (2009), no. 6, 1562–1578.[MR]
  339. Eyal Z. Goren and Kristin E. Lauter, Genus 2 curves with complex multiplication, preprint (2010).[arXiv]
  340. Matthew Greenberg, Computing Heegner points arising from Shimura curve parametrizations, Preprint (2006), 11 pages.[link]
  341. Matthew Greenberg, Heegner Points and Rigid Analytic Modular Forms, PhD Thesis, McGill University, 2006.[link]
  342. Matthew Greenberg, Heegner point computations via numerical p-adic integration, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 4076, Springer Berlin / Heidelberg, 2006, pp. 361–376.[link]
  343. Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp., to appear (2011), 21 pages.[arXiv]
  344. Ralph Greenberg, On the structure of certain Galois cohomology groups, Doc. Math. (2006), no. Extra Vol., 335–391 (electronic).[MR]
  345. Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarnita, Computational verification of the birch and swinnerton-dyer conjecture for individual elliptic curves, Math. Comp 78 (2009), 2397–2425.
  346. Grigor Grigorov, Andrei Jorza, Stephan Patrikis, William A. Stein, and Corina Tarnita-Patrascu, Verification of the Birch and Swinnerton-Dyer conjecture for specific elliptic curves, Preprint, 26 pages.
  347. J. Guardia, J. Montes, and E. Nart, Higher Newton polygons and integral bases, preprint (2009).[arXiv]
  348. Jordi Guàrdia, Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1253–1283.[MR]
  349. Jordi Guardia, Jesus Montes, and Enric Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, preprint (2008), 24 pages.[arXiv]
  350. Xavier Guitart and Jordi Quer, Modular abelian varieties over number fields, preprint (2009), 24 pages.[arXiv]
  351. P. E. Gunnells, F. Hajir, and D. Yasaki, Modular forms and elliptic curves over the field of fifth roots of unity, preprint (2010), 22 pages.[arXiv]
  352. Paul E. Gunnells and Dan Yasaki, Perfect forms over totally real number fields, preprint (2009), 11 pages.[arXiv]
  353. K. Győry, L. Hajdu, and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math. 145 (2009), no. 4, 845–864.[MR/doi]
  354. K. Győry and Á. Pintér, Almost perfect powers in products of consecutive integers, Monatsh. Math. 145 (2005), no. 1, 19–33.[MR]
  355. K. Győry and Á. Pintér, Correction to the paper: "Almost perfect powers in products of consecutive integers", Monatsh. Math. 146 (2005), no. 4, 341.[MR]
  356. K. Győry and Á. Pintér, On the resolution of equations Axn-Byn = C in integers x,y and n ≥ 3. I, Publ. Math. Debrecen 70 (2007), no. 3-4, 483–501.[MR]
  357. Lajos Hajdu, Optimal systems of fundamental S-units for LLL-reduction, Period. Math. Hungar. 59 (2009), no. 1, 53–79.[MR/doi]
  358. Lajos Hajdu and Szabolcs Tengely, Arithmetic progressions of squares, cubes and n-th powers, Funct. Approx. Comment. Math. 41 (2009), no. 2, 129–138.[MR/arXiv]
  359. Lajos Hajdu, Szabolcs Tengely, and Robert Tijdeman, Cubes in products of terms in arithmetic progression, Publ. Math. Debrecen 74 (2009), no. 1-2, 215–232.[MR]
  360. Emmanuel Hallouin and Christian Maire, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 595 (2006), 189–213.[MR]
  361. Emmanuel Hallouin and Marc Perret, On the kernel of the norm in some unramified number fields extensions, preprint (2007), 6 pages.[arXiv]
  362. Jonathan Hanke, Local densities and explicit bounds for representability by a quadratric form, Duke Math. J. 124 (2004), no. 2, 351–388.[MR]
  363. G. Hanrot and F. Morain, Solvability by radicals from an algorithmic point of view, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 175–182 (electronic).[MR]
  364. Guillaume Hanrot and Damien Stehlé, Improved analysis of Kannan's shortest lattice vector algorithm (extended abstract), Advances in cryptology—CRYPTO 2007, Lecture Notes in Comput. Sci., vol. 4622, Springer, Berlin, 2007, pp. 170–186.[MR]
  365. Brian Hansen, Explicit computations supporting a generalization of Serre's conjecture, Master's Thesis, Brigham Young University, 2005.
  366. Masaaki Harada, On the existence of frames of the Niemeier lattices and self-dual codes over Fp, J. Algebra 321 (2009), no. 8, 2345–2352.[MR/doi]
  367. Masaaki Harada, Masaaki Kitazume, and Michio Ozeki, Ternary code construction of unimodular lattices and self-dual codes over Z6, J. Algebraic Combin. 16 (2002), no. 2, 209–223.[MR]
  368. Robin Hartshorne and Ronald van Luijk, Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on K3 surfaces, Math. Intelligencer 30 (2008), no. 4, 4–10.[MR/arXiv]
  369. David Harvey, Kedlaya's algorithm in larger characteristic, Int. Math. Res. Not. IMRN (2007), no. 22, Art. ID rnm095, 29.[MR]
  370. David Harvey, A cache-friendly truncated FFT, Theor. Comput. Sci. 410 (2009), no. 27-29, 2649–2658.[arXiv]
  371. Ki-ichiro Hashimoto, Katsuya Miyake, and Hiroaki Nakamura (eds.), Galois Theory and Modular Forms, in Proceedings of the International Conference held at Tokyo Metropolitan University, Tokyo, September 25–29, 2001, Developments in Mathematics, vol. 11, Kluwer Academic Publishers, Boston, MA, 2004, pp. xii+393.[MR]
  372. Brendan Hassett, Anthony Vàrilly-Alvarado, and Patrick Varilly, Transcendental obstructions to weak approximation on general K3 surfaces, preprint (2010), 24 pages.[arXiv]
  373. Bo He and Alain Togbé, On the number of solutions of Goormaghtigh equation for given x and y, Indag. Math. (N.S.) 19 (2008), no. 1, 65–72.[MR]
  374. Lenwood S. Heath and Nicholas A. Loehr, New algorithms for generating Conway polynomials over finite fields, in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 1999), ACM, New York, 1999, pp. 429–437.[MR]
  375. Lenwood S. Heath and Nicholas A. Loehr, New algorithms for generating Conway polynomials over finite fields, J. Symbolic Comput. 38 (2004), no. 2, 1003–1024.[MR]
  376. Stephan Hell, Die nenner des kontsevich-integrals und ein spezieller drinfeld-assoziator, PhD Thesis, Freie Universität Berlin, 2002.
  377. Boris Hemkemeier, Algorithmische konstruktionen von gittern, preprint (2004), 64 pages.[arXiv]
  378. E. Herrmann, I. Járási, and A. Pethő, Note on: "The Diophantine equation xn=Dy2 + 1" by J. H. E. Cohn, Acta Arith. 113 (2004), no. 1, 69–76.[MR]
  379. E. Herrmann, F. Luca, and P. G. Walsh, A note on the Ramanujan-Nagell equation, Publ. Math. Debrecen 64 (2004), no. 1-2, 21–30.[MR]
  380. Emanuel Herrmann and Attila Pethő, S-integral points on elliptic curves. Notes on a paper of B. M. M. de Weger, J. Théor. Nombres Bordeaux 13 (2001), no. 2, 443–451.[MR]
  381. F. Hess, An algorithm for computing isomorphisms of algebraic function fields, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 263–271.[MR]
  382. F. Hess, Weil descent attacks, Advances in Elliptic Curve Cryptography, London Math. Soc. Lecture Note Ser., vol. 317, Cambridge Univ. Press, Cambridge, 2005, pp. 151–180.[MR]
  383. Florian Hess, Computing relations in divisor class groups of algebraic curves over finite fields, Preprint (2003).
  384. Florian Hess, A note on the Tate pairing of curves over finite fields, Arch. Math. (Basel) 82 (2004), no. 1, 28–32.[MR]
  385. Florian Hess, Sebastian Pauli, and Michael E. Pohst, Computing the multiplicative group of residue class rings, Math. Comp. 72 (2003), no. 243, 1531–1548 (electronic).[MR]
  386. Laura Hitt, Families of genus 2 curves with small embedding degree, J. Math. Cryptol. 3 (2009), no. 1, 19–36.[MR/link]
  387. Mark van Hoeij, Factoring polynomials and the knapsack problem, J. Number Theory 95 (2002), no. 2, 167–189.[MR]
  388. Mark van Hoeij and John Cremona, Solving conics over function fields, J. Théor. Nombres Bordeaux 18 (2006), no. 3, 595–606.[MR]
  389. Jerome W. Hoffman, Ling Long, and Helena Verrill, On l-adic representations for a space of noncongruence cuspforms, preprint (2010).[arXiv]
  390. Akinari Hoshi, On the simplest quartic fields and related Thue equations, preprint (2010), 17 pages.[arXiv]
  391. E. W. Howe and K. E. Lauter, Improved upper bounds for the number of points on curves over finite fields, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1677–1737.[MR]
  392. Everett W. Howe, Higher-order Carmichael numbers, Math. Comp. 69 (2000), no. 232, 1711–1719.[MR]
  393. Everett W. Howe, Infinite families of pairs of curves over Q with isomorphic Jacobians, J. London Math. Soc. (2) 72 (2005), no. 2, 327–350.[MR]
  394. Everett W. Howe, Supersingular genus-2 curves over fields of characteristic 3, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 49–69.[MR/arXiv]
  395. Everett W. Howe, Kristin E. Lauter, and Jaap Top, Pointless curves of genus three and four, Arithmetic, Geometry and Coding Theory (AGCT 2003), Sémin. Congr., vol. 11, Soc. Math. France, Paris, 2005, pp. 125–141.[MR]
  396. Everett W. Howe and Hui June Zhu, On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field, J. Number Theory 92 (2002), no. 1, 139–163.[MR]
  397. David Hubbard, Dihedral side extensions and class groups, J. Number Theory 128 (2008), no. 4, 731–737.[MR]
  398. Hendrik Hubrechts, Point counting in families of hyperelliptic curves, Found. Comput. Math. 8 (2008), no. 1, 137–169.[MR/arXiv]
  399. Hendrik Hubrechts, Quasi-quadratic elliptic curve point counting using rigid cohomology, J. Symb. Comput. 44 (2009), no. 9, 1255–1267.[arXiv]
  400. Klaus Hulek and Helena Verrill, On modularity of rigid and nonrigid Calabi-Yau varieties associated to the root lattice A4, Nagoya Math. J. 179 (2005), 103–146.[MR]
  401. Klaus Hulek and Helena A. Verrill, On the motive of Kummer varieties associated to Γ1(7)— Supplement to the paper: "The modularity of certain non-rigid Calabi-Yau threefolds" by R. Livné and N. Yui, J. Math. Kyoto Univ. 45 (2005), no. 4, 667–681.[MR/link]
  402. Stephen P. Humphries and Kenneth W. Johnson, Fusions of character tables and Schur rings of abelian groups, Comm. Algebra 36 (2008), no. 4, 1437–1460.[MR]
  403. Patrick Ingram, Multiples of integral points on elliptic curves, J. Number Theory 129 (2009), no. 1, 182–208.[MR/doi]
  404. Farzali A. Izadi and V. Kumar Murty, Counting points on an abelian variety over a finite field, Progress in Cryptology—Indocrypt 2003, Lecture Notes in Comput. Sci., vol. 2904, Springer, Berlin, 2003, pp. 323–333.[MR]
  405. Samar Jaafar and Kamal Khuri-Makdisi, On the maps from X(4p) to X(4), preprint (2007), 11 pages.[arXiv]
  406. David Jao and Vladimir Soukharev, A subexponential algorithm for evaluating large degree isogenies, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 219–233.[doi/arXiv]
  407. Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, and Florence Soriano-Gafiuk, Computation of 2-groups of positive classes of exceptional number fields, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 715–732.[MR]
  408. Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, and Florence Soriano-Gafiuk, Computation of 2-groups of narrow logarithmic divisor classes of number fields, J. Symbolic Comput. 44 (2009), no. 7, 852–863.[MR/doi]
  409. Dimitar Jetchev, Kristin Lauter, and William Stein, Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich-Tate group, J. Number Theory 129 (2009), no. 2, 284–302.[doi]
  410. Dimitar P. Jetchev and William A. Stein, Visibility of the Shafarevich-Tate group at higher level, Doc. Math. 12 (2007), 673–696.[MR]
  411. Jorge Jimenez-Urroz and Tonghai Yang, Heegner zeros of theta functions, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4137–4149 (electronic).[MR]
  412. Henri Johnston, On the trace map between absolutely abelian number fields of equal conductor, Acta Arith. 122 (2006), no. 1, 63–74.[MR]
  413. John W. Jones and David P. Roberts, A database of local fields, J. Symbolic Comput. 41 (2006), no. 1, 80–97.[MR]
  414. Rafe Jones and Jeremy Rouse, Galois theory of iterated endomorphisms, Proc. London Math. Soc. (3) 100 (2010), 763–794.[doi]
  415. Rafe Jones and Jeremy Rouse, Iterated endomorphisms of abelian algebraic groups, Proc. London Math. Soc. 100 (2010), 763–794.[doi/arXiv]
  416. John Jossey, Galois 2-extensions unramified outside 2, J. Number Theory 124 (2007), no. 1, 42–56.[MR]
  417. Antoine Joux and Reynald Lercier, Counting points on elliptic curves in medium characteristic, Preprint (2006), 15.[link]
  418. David Joyner and Amy Ksir, Modular representations on some Riemann-Roch spaces of modular curves X(N), Computational Aspects of Algebraic Curves, Lecture Notes Ser. Comput., vol. 13, World Sci. Publ., Hackensack, NJ, 2005, pp. 163–205.[MR]
  419. Ben Kane, CM liftings of supersingular elliptic curves, preprint (2009), 26 pages.[arXiv]
  420. Benjamin Kane, Representing sets with sums of triangular numbers, Int. Math. Res. Not. IMRN (2009), no. 17, 3264–3285.[MR]
  421. Koray Karabina and Edlyn Teske, On prime-order elliptic curves with embedding degrees k=3,4, and 6, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 102–117.
  422. Hidenori Katsurada, Exact standard zeta values of Siegel modular forms, Experiment. Math. 19 (2010), no. 1, 65–77.[link]
  423. Kiran S. Kedlaya and Andrew V. Sutherland, Computing L-series of hyperelliptic curves, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, 2008, pp. 312–326.
  424. Masanari Kida, Kummer theory for norm algebraic tori, J. Algebra 293 (2005), no. 2, 427–447.[MR]
  425. Masanari Kida, A Kummer theoretic construction of an S3-polynomial with given quadratic subfield, Interdisciplinary Information Sciences 16 (2010), no. 1, 17–20.[doi]
  426. Masanari Kida, Descent Kummer theory via Weil restriction of multiplicative groups, J. of Number Theory 130 (2010), no. 3, 639–659.[doi]
  427. Masanari Kida, Guénaël Renault, and Kazuhiro Yokoyama, Quintic polynomials of Hashimoto-Tsunogai, Brumer and Kummer, Int. J. Number Theory 5 (2009), no. 4, 555–571.[MR/doi]
  428. Masanari Kida, Yuichi Rikuna, and Atsushi Sato, Classifying Brumer's quintic polynomials by weak Mordell-Weil groups, IJNT 6 (2010), no. 3, 691–704.[doi]
  429. L. J. P. Kilford, Slopes of overconvergent modular forms, PhD Thesis, Imperial College, University of London, 2002.[link]
  430. L. J. P. Kilford, Some non-Gorenstein Hecke algebras attached to spaces of modular forms, J. Number Theory 97 (2002), no. 1, 157–164.[MR]
  431. L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level, Math. Res. Lett. 11 (2004), no. 5-6, 723–739.[MR]
  432. L. J. P. Kilford, Generating spaces of modular forms with η-quotients, JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 213–226.[MR/arXiv]
  433. L. J. P. Kilford, Modular forms, Imperial College Press, London, 2008, pp. xxii+224.[MR]
  434. L. J. P. Kilford, On a p-adic extension of the Jacquet-Langlands correspondence to weight 1, preprint (2008), 17 pages.[arXiv]
  435. L. J. P. Kilford, On mod p modular representations which are defined over Fp, Glas. Mat. Ser. III 43(63) (2008), no. 1, 1–6.[MR/arXiv]
  436. L. J. P. Kilford, On the slopes of the U5 operator acting on overconvergent modular forms, J. Théor. Nombres Bordeaux 20 (2008), no. 1, 165–182.[MR/arXiv]
  437. L. J. P. Kilford, Experimental finding of modular forms for noncongruence subgroups, preprint (2009), 12 pages.[arXiv]
  438. L. J. P. Kilford, On the Up operator acting on p-adic overconvergent modular forms when X0(p) has genus 1, J. Number Theory 130 (2010), no. 3, 586–594.[MR/doi/arXiv]
  439. L. J. P. Kilford and Gabor Wiese, On the failure of the Gorenstein property for Hecke algebras of prime weight, Experiment. Math. 17 (2008), no. 1, 37–52.[MR/arXiv]
  440. L. J. P. Kilford and Gabor Wiese, On mod p representations which are defined over Fp: ii, Glasgow Math. J. 52 (2010), 391–400.[doi]
  441. Dae San Kim, Codes associated with O+(2n,2r) and power moments of Kloosterman sums, preprint (2008), 9 pages.[arXiv]
  442. Dae San Kim, Codes associated with orthogonal groups and power moments of Kloosterman sums, preprint (2008).[arXiv]
  443. Dae San Kim, Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums, preprint (2008), 7 pages.[arXiv]
  444. Ian Kiming, Matthias Schuett, and Helena Verrill, Lifts of projective congruence groups, J. London Math. Soc, to appear (2010), 25 pages.[arXiv]
  445. Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput 39 (2010), no. 5, 1714–1747.
  446. Norbert Klingen, Leopoldt's conjecture for imaginary Galois number fields, J. Symbolic Comput. 10 (1990), no. 6, 531–545.[MR]
  447. Ingo Herbert Klöcker, Modular forms for the orthogonal group O(2,5), PhD Thesis, 2005.
  448. Jürgen Klüners, Algorithms for function fields, Experiment. Math. 11 (2002), no. 2, 171–181.[MR]
  449. Jürgen Klüners and Gunter Malle, Counting nilpotent Galois extensions, J. Reine Angew. Math. 572 (2004), 1–26.[MR]
  450. Jürgen Klüners and Sebastian Pauli, Computing residue class rings and Picard groups of orders, J. Algebra 292 (2005), no. 1, 47–64.[MR]
  451. David R. Kohel, Hecke module structure of quaternions, Class Field Theory—Its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 177–195.[MR]
  452. David R. Kohel, The AGM-X0(N) Heegner point lifting algorithm and elliptic curve point counting, Advances in Cryptology—Asiacrypt 2003, Lecture Notes in Comput. Sci., vol. 2894, Springer, Berlin, 2003, pp. 124–136.[MR]
  453. David R. Kohel and William A. Stein, Component groups of quotients of J0(N), Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 405–412.[MR]
  454. David R. Kohel and Helena A. Verrill, Fundamental domains for Shimura curves, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222.[MR]
  455. Kenji Koike and Annegret Weng, Construction of CM Picard curves, Math. Comp. 74 (2005), no. 249, 499–518 (electronic).[MR]
  456. Elisavet Konstantinou and Aristides Kontogeorgis, Computing polynomials of the Ramanujan tn class invariants, Canad. Math. Bull. 52 (2009), no. 4, 583–597.[MR/link]
  457. Aristides Kontogeorgis and Victor Rotger, On the non-existence of exceptional automorphisms on Shimura curves, Bull. Lond. Math. Soc. 40 (2008), no. 3, 363–374.[MR/arXiv]
  458. Aristides Kontogeorgis and Yifan Yang, Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic, LMS J. Comput. Math. 13 (2010), 144-163.
  459. Tünde Kovács, Combinatorial Diophantine equations—the genus 1 case, Publ. Math. Debrecen 72 (2008), no. 1-2, 243–255.[MR]
  460. Tünde Kovács, Combinatorial numbers in binary recurrences, Period. Math. Hungar. 58 (2009), no. 1, 83–98.[MR/doi]
  461. Emmanuel Kowalski, The large sieve, monodromy, and zeta functions of algebraic curves. II. Independence of the zeros, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 091, 57.[MR/arXiv]
  462. Andrew Kresch and Yuri Tschinkel, Integral points on punctured abelian surfaces, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 198–204.[MR]
  463. A. Krieg, The graded ring of quaternionic modular forms of degree 2, Math. Z. 251 (2005), no. 4, 929–942.[MR]
  464. L. Kulesz, G. Matera, and É. Schost, Uniform bounds on the number of rational points of a family of curves of genus 2, J. Number Theory 108 (2004), no. 2, 241–267.[MR]
  465. M. Künzer and H. Weber, Some additive Galois cohomology rings, Comm. Algebra 33 (2005), no. 12, 4415–4455.[MR]
  466. Matthias Künzer and Eduard Wirsing, On coefficient valuations of Eisenstein polynomials, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 801–823.[MR]
  467. Thorsten Lagemann, Codes und automorphismen optimaler artin-schreier-turme, PhD Thesis, Ruprecht-Karls-Universität Heidelberg, 2006.
  468. Shanta Laishram, T. N. Shorey, and Szabolcs Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power, Acta Arith. 135 (2008), no. 2, 143–158.[MR]
  469. Dominic Lanphier, Combinatorics of Maass-Shimura operators, J. Number Theory 128 (2008), no. 8, 2467–2487.[MR]
  470. Dominic Lanphier, The trace of special values of modular L-functions, Preprint, 18 pages.
  471. A. Laradji, M. Mignotte, and N. Tzanakis, On px2 + q2n= yp and related Diophantine equations, preprint (2010), 22 pages.[arXiv]
  472. Joan-C. Lario and René Schoof, Some computations with Hecke rings and deformation rings, Experiment. Math. 11 (2002), no. 2, 303–311.[MR]
  473. Alan G. B. Lauder, A recursive method for computing zeta functions of varieties, LMS J. Comput. Math. 9 (2006), 222–269 (electronic).[MR]
  474. Alan G. B. Lauder, Ranks of elliptic curves over function fields, LMS J. Comput. Math. 11 (2008), 172–212.[MR]
  475. Alan G. B. Lauder, Degenerations and limit Frobenius structures in rigid cohomology, preprint (2009), 41 pages.[arXiv]
  476. Grégoire Lecerf, Fast separable factorization and applications, Appl. Algebra Engrg. Comm. Comput. 19 (2008), no. 2, 135–160.[MR]
  477. Y. Lee, R. Scheidler, and C. Yarrish, Computation of the fundamental units and the regulator of a cyclic cubic function field, Experiment. Math. 12 (2003), no. 2, 211–225.[MR]
  478. D. Lehavi and C. Ritzenthaler, An explicit formula for the arithmetic-geometric mean in genus 3, Experiment. Math. 16 (2007), no. 4, 421–440.[MR/arXiv]
  479. Douglas A. Leonard, A weighted module view of integral closures of affine domains of type I, Adv. Math. Commun. 3 (2009), no. 1, 1-11.
  480. F. Leprévost, M. Pohst, and A. Schöpp, Rational torsion of J0(N) for hyperelliptic modular curves and families of Jacobians of genus 2 and genus 3 curves with a rational point of order 5, 7 or 10, Abh. Math. Sem. Univ. Hamburg 74 (2004), 193–203.[MR]
  481. Franck Leprévost, Michael Pohst, and Andreas Schöpp, Familles de polynômes liées aux courbes modulaires X(l) unicursales et points rationnels non-triviaux de courbes elliptiques quotient, Acta Arith. 110 (2003), no. 4, 401–410.[MR]
  482. Franck Leprévost, Michael Pohst, and Andreas Schöpp, Units in some parametric families of quartic fields, Acta Arith. 127 (2007), no. 3, 205–216.[MR]
  483. Reynald Lercier and David Lubicz, A quasi-quadratic time algorithm for hyperelliptic curve point counting, Ramanujan J. 12 (2006), no. 3, 399–423.[MR/doi]
  484. Reynald Lercier and Thomas Sirvent, On Elkies subgroups of l-torsion points in elliptic curves defined over a finite field, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 783–797.[MR/arXiv]
  485. Aaron Levin, Ideal class groups and torsion in Picard groups of varieties, preprint (2008), 31 pages.[arXiv]
  486. Rudolf Lidl, Computational problems in the theory of finite fields, Appl. Algebra Engrg. Comm. Comput. 2 (1991), no. 2, 81–89.[MR]
  487. Mark Lingham, Modular Forms and Elliptic Curves over Imaginary Quartic Fields, PhD Thesis, University of Nottingham, 2005.
  488. Petr Lisoněk, On the connection between Kloosterman sums and elliptic curves, Sequences and Their Applications – SETA 2008: Proceedings, Lecture Notes in Computer Science, vol. 5203, Springer, Berlin Heidelberg, 2008, pp. 182–187.
  489. David Loeffler, Explicit calculations of automorphic forms for definite unitary groups, LMS J. Comput. Math. 11 (2008), 326–342.[MR]
  490. David Loeffler and Jared Weinstein, On the computation of local components of a newform, preprint (2010), 21 pages.[arXiv]
  491. Adam Logan and Ronald van Luijk, Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), no. 265, 441–483.[MR]
  492. Ling Long, On Atkin and Swinnerton-Dyer congruence relations. III, J. Number Theory 128 (2008), no. 8, 2413–2429.[MR/arXiv]
  493. Ling Long and Chris Kurth, On modular forms for some noncongruence subgroups of SL2Z) II, preprint (2008), 13 pages.[arXiv]
  494. Dino Lorenzini and Thomas J. Tucker, Thue equations and the method of Coleman-Chabauty, preprint (2000), 30 pages.[arXiv]
  495. Álvaro Lozano-Robledo, On the product of twists of rank two and a conjecture of Larsen, Ramanujan J. 19 (2009), no. 1, 53–61.[MR/doi]
  496. F. Luca, P. Stanica, and A. Togbé, On a Diophantine equation of Stroeker, Bull. Belg. Math. Soc. Simon Stevin (2008), 10.
  497. Florian Luca and Alain Togbé, On the Diophantine equation x2+2α13β=yn, Colloq. Math. 116 (2009), no. 1, 139–146.[MR/doi]
  498. Florian Luca and Peter Gareth Walsh, On a sequence of integers arising from simultaneous Pell equations, Funct. Approx. Comment. Math. 38 (2008), no. , part 2, 221–226.[MR/link]
  499. Melissa L. Macasieb, Derived arithmetic Fuchsian groups of genus two, Experiment. Math. 17 (2008), no. 3, 347–369.[MR/arXiv]
  500. Piotr Maciak, Primes of the form x2+n*y2 in function fields, preprint (2009), 12 pages.[arXiv]
  501. A. Marschner and J. Müller, On a certain algebra of higher modular forms, Algebra Colloq. 16 (2009), 371–380.
  502. Phil Martin and Mark Watkins, Symmetric powers of elliptic curve L-functions, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 377–392.[MR]
  503. Jacques Martinet and Achill Schürmann, On classifying Minkowskian sublattices, preprint (2009), 29 pages.[arXiv]
  504. Kazuo Matsuno, Construction of elliptic curves with large Iwasawa λ-invariants and large Tate-Shafarevich groups, Manuscripta Math. 122 (2007), no. 3, 289–304.[MR]
  505. Kazuto Matsuo, Jinhui Chao, and Shigeo Tsujii, An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 461–474.[MR]
  506. Barry Mazur, William Stein, and John Tate, Computation of p-adic heights and log convergence, Doc. Math. (2006), no. Extra Vol., 577–614 (electronic).[MR]
  507. William G. McCallum and Romyar T. Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. J. 120 (2003), no. 2, 269–310.[MR]
  508. J. McLaughlin, Small prime powers in the Fibonacci sequence, preprint (2002), 22 pages.[arXiv]
  509. Stephen McMath, Parallel integer factorization using quadratic forms, Technical Report (2005), 132 pages.
  510. Moritz Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, Math. Comput. Sci. 3 (2010), 209–224.[doi]
  511. J. M. Miret, R. Moreno, J. Pujolàs, and A. Rio, Halving for the 2-Sylow subgroup of genus 2 curves over binary fields, Finite Fields Appl. 15 (2009), no. 5, 569–579.[MR/doi]
  512. J. Miret, R. Moreno, A. Rio, and M. Valls, Computing the l-power torsion of an elliptic curve over a finite field, Math. Comp. 78 (2009), no. 267, 1767–1786.[MR]
  513. J. Miret, R. Moreno, D. Sadornil, J. Tena, and M. Valls, Computing the height of volcanoes of l-isogenies of elliptic curves over finite fields, Appl. Math. Comput. 196 (2008), no. 1, 67–76.[MR]
  514. Josep M. Miret, Jordi Pujolàs, and Anna Rio, Bisection for genus 2 curves in odd characteristic, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 4, 55–60.[MR/doi]
  515. Marcel Mohyla and Gabor Wiese, A computational study of the asymptotic behaviour of coefficient fields of modular forms, preprint (2009), 19 pages.[arXiv]
  516. Marko Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm, Acta Arith. 132 (2008), no. 4, 329–350.[MR/arXiv]
  517. Michael Monagan and Mark van Hoeij, A modular algorithm for computing polynomial GCDs over number fields presented with multiple extensions, preprint http://www.cecm.sfu.ca/CAG/papers/HoeijMonGCD.pdf, 36 pages.
  518. F. Morain, Primality proving using elliptic curves: An update, Algorithmic Number Theory (Portland, OR, 1998), Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 111–127.[MR]
  519. I. Morel, D. Stehlé, and G. Villard, Analyse numerique et reduction de reseaux, Technique et Science Informatiques, to appear (2009), 29 pages.
  520. J. -M. Muller, N. Brisebarre, F. de Dinechin, C. -P. Jeannerod, L. Vincent, G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of floating-point arithmetic, Birkhäuser, Boston, MA, 2009, pp. 660.
  521. Jan-Steffen Müller, Explicit Kummer surface theory for arbitrary characteristic, London Math. Soc. J. Comput. Math. 13 (2010), 47–64.[arXiv]
  522. Siguna Müller, On the computation of square roots in finite fields, Des. Codes Cryptogr. 31 (2004), no. 3, 301–312.[MR]
  523. F. S. Abu Muriefah, F. Luca, S. Siksek, and S. Tengely, On the Diophantine equation x2+C=2yn, Int. J. Number Theory (2008).
  524. Filip Najman, Complete classification of torsion of elliptic curves over quadratic cyclotomic fields, J. Number Theory 130 (2010), no. 9, 1964–1968.[MR/doi]
  525. G. Nebe, Kneser-Hecke-operators in coding theory, Abh. Math. Sem. Univ. Hamburg 76 (2006), 79–90.[MR]
  526. Gabriele Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998), 106–223 (electronic).[MR]
  527. Gabriele Nebe, Even lattices with covering radius < √2, Beiträge Algebra Geom. 44 (2003), no. 1, 229–234.[MR]
  528. Gabriele Nebe, Strongly modular lattices with long shadow, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 187–196.[MR]
  529. Gabriele Nebe, An even unimodular 72-dimensional lattice of minimum 8, preprint (2010).[arXiv]
  530. Gabriele Nebe and Kristina Schindelar, S-extremal strongly modular lattices, J. Théor. Nombres Bordeaux 19 (2007), no. 3, 683–701.[MR]
  531. Gabriele Nebe and Maria Teider, Hecke actions on certain strongly modular genera of lattices, Arch. Math. (Basel) 84 (2005), no. 1, 46–56.[MR]
  532. Gabriele Nebe and Boris Venkov, The strongly perfect lattices of dimension 10, J. Théor. Nombres Bordeaux 12 (2000), no. 2, 503–518.[MR]
  533. Gabriele Nebe and Boris Venkov, Low-dimensional strongly perfect lattices I: The 12-dimensional case, Enseign. Math. (2) 51 (2005), no. 1-2, 129–163.[MR]
  534. Gabriele Nebe and Boris Venkov, Low dimensional strongly perfect lattices III: Dual strongly perfect lattices of dimension 14, IJNT 2 (2010), no. 2, 387–409.[arXiv]
  535. Gabriele Nebe and Chaoping Xing, A Gilbert-Varshamov type bound for Euclidean packings, Math. Comp. 77 (2008), no. 264, 2339–2344.[MR]
  536. Phong Q. Nguên and Damien Stehlé, Floating-point LLL revisited, Advances in cryptology—EUROCRYPT 2005, Lecture Notes in Comput. Sci., vol. 3494, Springer, Berlin, 2005, pp. 215–233.[MR]
  537. Phong Q. Nguyen and Damien Stehlé, LLL on the average, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 238–256.[MR]
  538. Annika Niehage, Quantum Goppa codes over hypereliptic curves, Master's Thesis, Universität Mannheim, 2004.
  539. Harris Nover, Computation of Galois groups associated to the 2-class towers of some imaginary quadratic fields with 2-class group C2×C2×C2, Journal of Number Theory 129 (2009), no. 1, 231–245.[doi]
  540. Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004, pp. viii+216.[MR]
  541. Alina Ostafe and Igor E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, preprint (2010).[arXiv]
  542. Manabu Oura, Cris Poor, and David S. Yuen, Towards the Siegel ring in genus four, Int. J. Number Theory 4 (2008), no. 4, 563–586.[MR]
  543. Ferruh Özbudak, Elements of prescribed order, prescribed traces and systems of rational functions over finite fields, Des. Codes Cryptogr. 34 (2005), no. 1, 35–54.[MR]
  544. Ekin Ozman, Local points on quadratic twists of X0(N), preprint (2009), 26 pages.[arXiv]
  545. Ariel Pacetti and Fernando Rodriguez Villegas, Computing weight 2 modular forms of level p2, Math. Comp. 74 (2005), no. 251, 1545–1557 (electronic).[MR]
  546. Mihran Papikian, On the degree of modular parametrizations over function fields, J. Number Theory 97 (2002), no. 2, 317–349.[MR/doi]
  547. Mihran Papikian, On the variation of Tate-Shafarevich groups of elliptic curves over hyperelliptic curves, J. Number Theory 115 (2005), no. 2, 249–283.[MR]
  548. Sebastian Pauli, Efficient enumeration of extensions of local fields with bounded discriminant, PhD Thesis, Concordia University, 2001.
  549. Sebastian Pauli, Constructing class fields over local fields, J. Théor. Nombres Bordeaux 18 (2006), no. 3, 627–652.[MR]
  550. Sebastian Pauli and Florence Soriano-Gafiuk, The discrete logarithm in logarithmic l-class groups and its applications in K-theory, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 367–378.[MR]
  551. Bernadette Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en p, Experiment. Math. 12 (2003), no. 2, 155–186.[MR/link]
  552. Kathleen L. Petersen, One-cusped congruence subgroups of Bianchi groups, Math. Ann. 338 (2007), no. 2, 249–282.[MR]
  553. B. V. Petrenko, On the product of two primitive elements of maximal subfields of a finite field, J. Pure Appl. Algebra 178 (2003), no. 3, 297–306.[MR]
  554. B. V. Petrenko, On the sum of two primitive elements of maximal subfields of a finite field, Finite Fields Appl. 9 (2003), no. 1, 102–116.[MR]
  555. Francesco Dalla Piazza and Bert van Geemen, Siegel modular forms and finite symplectic groups, preprint (2008), 33 pages.[arXiv]
  556. Titus Piezas, Solving solvable sextics using polynomial decomposition, Preprint (2004), 22 pages.
  557. Á. Pintér, On a class of Diophantine equations related to the numbers of cells in hyperplane arrangements, J. Number Theory 129 (2009), no. 7, 1664–1668.[MR]
  558. Ákos Pintér, On the power values of power sums, J. Number Theory 125 (2007), no. 2, 412–423.[MR/doi]
  559. W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. I, Math. Comp. 45 (1985), no. 171, 209–221, S5–S16.[MR]
  560. W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. II, Math. Comp. 60 (1993), no. 202, 817–825.[MR]
  561. M. E. Pohst, Computational aspects of Kummer theory, Algorithmic number theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 259–272.[MR]
  562. Robert Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558.[MR]
  563. Bjorn Poonen, Computational aspects of curves of genus at least 2, Algorithmic Number Theory (Talence, 1996), Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 283–306.[MR]
  564. Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to x2+y3=z7, Duke Math. J. 137 (2007), no. 1, 103–158.[MR]
  565. Alexandru A. Popa, Central values of Rankin L-series over real quadratic fields, Compos. Math. 142 (2006), no. 4, 811–866.[MR]
  566. Jordi Quer, Fields of definition of building blocks, Math. Comp. 78 (2009), no. 265, 537–554.[MR]
  567. Håvard Raddum and Igor Semaev, Solving multiple right hand sides linear equations, Des. Codes Cryptogr. 49 (2008), no. 1-3, 147–160.[MR/eprint]
  568. E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimodular lattices, J. Number Theory 73 (1998), no. 2, 359–389.[MR]
  569. Lisa Marie Redekop, Torsion Points of Low Order on Elliptic Curves and Drinfeld Modules, PhD Thesis, 2002.[link]
  570. Jonathan Reynolds, Extending Siegel's theorem for elliptic curves, PhD Thesis, University of East Anglia, 2008.[link]
  571. Guillaume Ricotta and Thomas Vidick, Hauteur asymptotique des points de Heegner, Canad. J. Math. 60 (2008), no. 6, 1406–1436.[MR]
  572. Christophe Ritzenthaler, Automorphismes des courbes modulaires X(n) en caractéristique p, Manuscripta Math. 109 (2002), no. 1, 49–62.[MR]
  573. Christophe Ritzenthaler, Point counting on genus 3 non hyperelliptic curves, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 379–394.[MR]
  574. Christophe Ritzenthaler, Explicit computations of Serre's obstruction for genus 3 curves and application to optimal curves, LMS Journal of Computation and Mathematics 13 (2010), 192–207.[arXiv]
  575. Xavier-François Roblot, Polynomial factorization algorithms over number fields, J. Symbolic Comput. 38 (2004), no. 5, 1429–1443.[MR]
  576. Jeremy Rouse, Zagier duality for the exponents of Borcherds products for Hilbert modular forms, J. London Math. Soc. (2) 73 (2006), no. 2, 339–354.[MR]
  577. Jeremy Rouse, Bounds for the coefficients of powers of the Delta-function, Bull. London Math. Soc. 40 (2008), no. 6, 1081-1090.[doi]
  578. Emmanuel Royer, Evaluating convolution sums of the divisor function with quasimodular forms, Int. J. Number Theory 3 (2007), no. 2, 231–261.[arXiv]
  579. Mohammad Sadek, Counting models of genus one curves, preprint (2010), 22 pages.[arXiv]
  580. J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, Dordrecht, 2004, pp. ii+637.[MR]
  581. Tanaka Satoru and Nakamula Ken, More constructing pairing-friendly elliptic curves for cryptography, preprint (2007), 11 pages.[arXiv]
  582. M. P. F. du Sautoy, J. J. McDermott, and G. C. Smith, Zeta functions of crystallographic groups and analytic continuation, Proc. London Math. Soc. (3) 79 (1999), no. 3, 511–534.[MR]
  583. Marcus du Sautoy and Luke Woodward, Nilpotent groups: explicit examples, Zeta Functions of Groups and Rings, Lecture Notes in Computer Science, vol. 1925/2008, Springer Berlin / Heidelberg, 2008, pp. 21–68.
  584. Diana Savin, About certain prime numbers, preprint (2009), 9.[arXiv]
  585. David Savitt, The maximum number of points on a curve of genus 4 over F8 is 25, Canad. J. Math. 55 (2003), no. 2, 331–352.[MR]
  586. Edward F. Schaefer and Michael Stoll, How to do a p-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), no. 3, 1209–1231 (electronic).[MR]
  587. Michael M. Schein, Weights in Serre's conjecture for Hilbert modular forms: the ramified case, Israel J. Math. 166 (2008), 369–391.[MR]
  588. Jasper Scholten, Weil restriction of an elliptic curve over a quadratic extension, Preprint (2004), 6 pages.
  589. René Schoof, Arakelov class groups and ideal lattices, Mathematisches Forschungsinstitut Oberwolfach Report No. 1/2005 (2005), 23–24.
  590. René Schoof, Computing Arakelov class groups, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 447–495.[MR/arXiv]
  591. Andreas M. Schöpp, Über torsionspunkte elliptischer und hyperelliptischer kurven nebst anwendungen, PhD Thesis, Technische Universitaet Berlin,, 2005.
  592. Andreas M. Schöpp, Fundamental units in a parametric family of not totally real quintic number fields, J. Théor. Nombres Bordeaux 18 (2006), no. 3, 693–706.[MR]
  593. Achill Schürmann, Enumerating perfect forms, Proceedings of the International Conference on Quadratic Forms, Chile 2007, Contemporary Mathematics, vol. To appear, 2009, 22 pages.[arXiv]
  594. Achill Schürmann, Perfect, strongly eutactic lattices are periodic extreme, Adv. Math 225 (2010), no. 5, 2546–2564.
  595. Achill Schürmann and Frank Vallentin, Local covering optimality of lattices: Leech lattice versus root lattice E8, Int. Math. Res. Not. (2005), no. 32, 1937–1955.[MR/arXiv]
  596. Mehmet Haluk Şengün, The nonexistence of certain representations of the absolute Galois group of quadratic fields, Proc. Amer. Math. Soc. 137 (2009), no. 1, 27–35.[MR]
  597. Romyar T. Sharifi, Iwasawa theory and the Eisenstein ideal, Duke Math. J. 137 (2007), no. 1, 63–101.[MR]
  598. Romyar T. Sharifi, On Galois groups of unramified pro-p extensions, Math. Ann. 342 (2008), no. 2, 297–308.[MR]
  599. Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Classification of eight-dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 21–32 (electronic).[MR]
  600. Samir Siksek, On standardized models of isogenous elliptic curves, Math. Comp. 74 (2005), no. 250, 949–951 (electronic).[MR]
  601. Samir Siksek, The modular approach to diophantine equations, Number Theory, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007, pp. 495-527.[doi]
  602. Samir Siksek, Chabauty for symmetric powers of curves, Algebra Number Theory 3 (2009), no. 2, 209–236.[MR/doi]
  603. Samir Siksek and John E. Cremona, On the Diophantine equation x2+7=ym, Acta Arith. 109 (2003), no. 2, 143–149.[MR]
  604. Samir Siksek and Michael Stoll, On a problem of Hajdu and Tengely, preprint (2009), 8 pages.[arXiv]
  605. N. J. A. Sloane, R. H. Hardin, T. D. S. Duff, and J. H. Conway, Minimal-energy clusters of hard spheres, Discrete Comput. Geom. 14 (1995), no. 3, 237–259.[MR]
  606. N. P. Smart, Thue and Thue-Mahler equations over rings of integers, J. London Math. Soc. (2) 56 (1997), no. 3, 455–462.[MR]
  607. Nigel P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical Society Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998, pp. xvi+243.[MR]
  608. B. de Smit and H. W. Lenstra, Jr., Linearly equivalent actions of solvable groups, J. Algebra 228 (2000), no. 1, 270–285.[MR]
  609. Bart de Smit, On arithmetically equivalent fields with distinct p-class numbers, J. Algebra 272 (2004), no. 2, 417–424.[MR]
  610. Bart de Smit and Robert Perlis, Zeta functions do not determine class numbers, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 213–215.[MR]
  611. B. Smith, Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves, J. Cryptology 22 (2009), no. 4, 505–529.
  612. Benjamin Smith, Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves, Advances in Cryptology, Eurocrypt 2008, Lecture Notes in Computer Science, vol. 4965, Springer Berlin/Heidelberg, 2008, pp. 163–180.[eprint]
  613. Benjamin Smith, Families of explicit isogenies of hyperelliptic Jacobians, Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics, vol. 521, AMS, Providence, R.I., 2009, pp. 121–144.[arXiv]
  614. Sebastian Karl Michael Stamminger, Explicit 8-descent on elliptic curves, PhD Thesis, International University Bremen, 2005.
  615. Damien Stehlé, Floating-point LLL: Theoretical and practical aspects, Proceedings of LLL+25 Conference, 2007 (2009), 36 pages.
  616. Damien Stehlé, Floating-point LLL: Theoretical and practical aspects, in Information Security and Cryptography: The LLL Algorithm, Information Security and Cryptography, Springer, Berlin Heidelberg, 2010, pp. 179–213.[doi]
  617. Damien Stehlé and Paul Zimmermann, A binary recursive GCD algorithm, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 411–425.[MR]
  618. William A. Stein, Explicit Approaches to Modular Abelian Varieties, PhD Thesis, University of California, Berkeley, 2000.
  619. William A. Stein, There are genus one curves over Q of every odd index, J. Reine Angew. Math. 547 (2002), 139–147.[MR]
  620. William A. Stein, Shafarevich-Tate groups of nonsquare order, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 277–289.[MR]
  621. William Stein, Studying the Birch and Swinnerton-Dyer conjecture for modular abelian varieties using Magma, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 93–116.[MR]
  622. William Stein, Modular Forms: A Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007, pp. xvi+268.[MR]
  623. William A. Stein, Visibility of Mordell-Weil groups, Doc. Math. 12 (2007), 587–606.[MR]
  624. William A. Stein, An introduction to computing modular forms using modular symbols, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 641–652.[MR]
  625. William A. Stein and Helena A. Verrill, Cuspidal modular symbols are transportable, LMS J. Comput. Math. 4 (2001), 170–181 (electronic).[MR]
  626. William Stein and Yan Zhang, On power bases in number fields, Preprint (2005), 15 pages.
  627. Aliza Steurer, On the Galois groups of the 2-class towers of some imaginary quadratic fields, J. Number Theory 125 (2007), no. 1, 235–246.[MR]
  628. A. Stoimenow, Generating functions, Fibonacci numbers and rational knots, J. Algebra 310 (2007), no. 2, 491–525.[MR]
  629. Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277.[MR]
  630. Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182.[MR]
  631. Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380.[arXiv]
  632. Katsuyuki Takashima, A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their cryptographic application, IEICE Trans. Fundamentals E89-A (2006), no. 1, 124–133.
  633. Fritz Grunewald Tatiana Bandman, Shelly Garion, On the surjectivity of engel words on psl(2,q), preprint (2010), 1–22.[arXiv]
  634. Sz. Tengely, Note on the paper: "An extension of a theorem of Euler" by N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, Acta Arith. 134 (2008), no. 4, 329–335.[MR]
  635. Szabolcs Tengely, On the Diophantine equation x2+a2=2yp, Indag. Math. (N.S.) 15 (2004), no. 2, 291–304.[MR]
  636. Szabolcs Tengely, Effective methods for Diophantine equations, PhD Thesis, Leiden University, 2005.
  637. Szabolcs Tengely, Triangles with two integral sides, Ann. Math. Inform. 34 (2007), 89–95.[MR]
  638. Nicolas M. Thiéry, Computing minimal generating sets of invariant rings of permutation groups with SAGBI-Gröbner basis, in Discrete Mathematics and Theoretical Computer Science: 4th International Conference, DMTCS 2003, Dijon, France, July 7-12, 2003: Proceedings, Lecture Notes in Computer Science, vol. 2731, Springer, Berlin, 2003, pp. 315–328.
  639. Thotsaphon Thongjunthug, Computing a lower bound for the canonical height on elliptic curves over totally real number fields, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 139-152.
  640. Anthony Vàrilly-Alvarado and Bianca Viray, Failure of the Hasse principle for Enriques surfaces, Advances in Mathematics 226 (2011), 4884–4901.[arXiv]
  641. Anthony Várilly-Alvarado and David Zywina, Arithmetic E8 lattices with maximal Galois action, LMS J. Comput. Math. 12 (2009), 144–165.[MR/arXiv]
  642. Xavier Taixes i Ventosa and Gabor Wiese, Computing congruences of modular forms and Galois representations modulo prime powers, preprint (2009), 26 pages.[arXiv]
  643. Helena A. Verrill, Transportable modular symbols and the intersection pairing, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 219–233.[MR]
  644. Marie-France Vignéras, p-adic integral structures of some representations of GL(2, F), Preprint (2005), 23 pages.[link]
  645. Gilles Villard, Certification of the QR factor R and of lattice basis reducedness, ISSAC 2007, ACM, New York, 2007, pp. 361–368.[MR/arXiv]
  646. Stéphane Vinatier, Structure galoisienne dans les extensions faiblement ramifiées de Q, J. Number Theory 91 (2001), no. 1, 126–152.[MR/doi]
  647. Bogdan G. Vioreanu, Mordell-Weil problem for cubic surfaces, numerical evidence, preprint (2008), 22 pages.[arXiv]
  648. Bianca Viray, A family of varieties with exactly one pointless rational fiber, preprint (2009), 4 pages.[arXiv]
  649. John Voight, Quadratic Forms and Quaternion Algebras: Algorithms and Arithmetic, PhD Thesis, Berkeley, 2005.
  650. John Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007), no. 259, 1589–1617 (electronic).[MR/arXiv]
  651. John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469–491.[MR/link]
  652. John Voight, The gauss higher relative class number problem, Ann. Sci. Math. Québec Accepted (2009), 10 pages.[arXiv]
  653. Christopher Voll, Normal subgroup growth in free class-2-nilpotent groups, Math. Ann. 332 (2005), no. 1, 67–79.[MR]
  654. P. G. Walsh, On a very particular class of Ramanujan-Nagell type equations, Far East J. Math. Sci. (FJMS) 24 (2007), no. 1, 55–58.[MR]
  655. Mark Watkins, A note on integral points on elliptic curves, J. Théor. Nombres Bordeaux 18 (2006), no. 3, 707–720.[MR]
  656. Mark Watkins, Some remarks on Heegner point computations, preprint (2006), 14 pages.[arXiv]
  657. Mark Watkins, Some heuristics about elliptic curves, Experiment. Math. 17 (2008), no. 1, 105–125.[MR/arXiv]
  658. Gabor Wiese, Dihedral Galois representations and Katz modular forms, Doc. Math. 9 (2004), 123–133 (electronic).[MR]
  659. Gabor Wiese, Modular Forms of Weight One over Finite Fields, PhD Thesis, Universiteit Leiden, 2005.
  660. Gabor Wiese, On the faithfulness of parabolic cohomology as a Hecke module over a finite field, J. reine angew. Math. 606 (2007), 79–103.[MR]
  661. Gabor Wiese, On projective linear groups over finite fields as Galois groups over the rational numbers, Edixhoven, Bas et al., Modular forms on Schiermonnikoog. Based on the conference on modular forms, Schiermonnikoog, Netherlands, October 2006, Cambridge University Press, Cambridge, 2008, pp. 343–350.[arXiv]
  662. Gabor Wiese, On modular symbols and the cohomology of Hecke triangle surfaces, Int. J. Number Theory 5 (2009), no. 1, 89–108.[MR/arXiv]
  663. Rolf Stefan Wilke, On rational embeddings of curves in the second Garcia-Stichtenoth tower, Finite Fields Appl. 14 (2008), no. 2, 494–504.[MR]
  664. Kenneth Koon-Ho Wong, Applications of finite field computation to cryptology: Extension field arithmetic in public key systems and algebraic attacks on stream ciphers, PhD Thesis, Queensland University of Technology, 2008.[link]
  665. Qingquan Wu and Renate Scheidler, An explicit treatment of biquadratic function fields, Contrib. Discrete Math. 2 (2007), no. 1, 43–60 (electronic).[MR]
  666. Christian Wuthrich, Self-points on an elliptic curve of conductor 14, in Proceedings of the Symposium on Algebraic Number Theory and Related Topics, RIMS Kôkyûroku Bessatsu, B4, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, pp. 189–195.[MR]
  667. Christian Wuthrich, The fine Tate-Shafarevich group, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 1–12.[MR]
  668. Chaoping Xing, Applications of algebraic curves to constructions of sequences, Cryptography and Computational Number Theory (Singapore, 1999), Progr. Comput. Sci. Appl. Logic, vol. 20, Birkhäuser, Basel, 2001, pp. 137–146.[MR]
  669. Chaoping Xing and Sze Ling Yeo, Construction of global function fields from linear codes and vice versa, Trans. Amer. Math. Soc. 361 (2008), no. 3, 1333-1349.
  670. Tonghai Yang, Local densities of 2-adic quadratic forms, J. Number Theory 108 (2004), no. 2, 287–345.[MR]
  671. Dan Yasaki, Integral cohomology of certain Picard modular surfaces, preprint (2007), 14 pages.[arXiv]
  672. Dan Yasaki, Binary Hermitian forms over a cyclotomic field, J. Algebra 322 (2009), no. 11, 4132–4142.[MR/doi]
  673. Dan Yasaki, Elliptic points of the Picard modular group, Monatsh. Math. 156 (2009), no. 4, 391–396.[MR]
  674. Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385–396.[doi]
  675. Jahan Zahid, Zeros of p-adic forms, J. Number Theory 129 (2009), no. 10, 2439–2456.[MR/doi]
  676. Alexey Zaytsev and Gary McGuire, On the zeta functions of an optimal tower of function fields over F4, preprint (2009), 14 pages.[arXiv]
  677. Huilin Zhu and Jianhua Chen, Integral points on a class of elliptic curve, Wuhan Univ. J. Nat. Sci. 11 (2006), no. 3, 477–480.[MR]
  678. Paul Zimmermann and Bruce Dodson, 20 years of ECM, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 525–542.[MR]
  679. David Zywina, A refinement of Koblitz's conjecture, preprint (2009).[arXiv]