Lie Algebras
- Y. Barnea and D. S. Passman, Filtrations in semisimple Lie algebras. II, Trans. Amer. Math. Soc. 360 (2008), no. 2, 801–817 (electronic).[MR]
- Laurent Bartholdi, Benjamin Enriquez, Pavel Etingof, and Eric Rains, Groups and Lie algebras corresponding to the Yang-Baxter equations, J. Algebra 305 (2006), no. 2, 742–764.[MR/arXiv]
- Dietrich Burde, Bettina Eick, and Willem de Graaf, Computing faithful representations for nilpotent Lie algebras, J. Algebra 322 (2009), no. 3, 602–612.[MR/doi]
- A. Caranti, S. Mattarei, and M. F. Newman, Graded Lie algebras of maximal class, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4021–4051.[MR]
- A. Caranti and M. F. Newman, Graded Lie algebras of maximal class. II, J. Algebra 229 (2000), no. 2, 750–784.[MR]
- Serena Cicalò and Willem A. de Graaf, Non-associative Gröbner bases, finitely-presented Lie rings and the Engel condition: II, J. Symbolic Comput. 44 (2009), no. 7, 786–800.
- Arjeh M. Cohen and Dan Roozemond, Computing Chevalley bases in small characteristics, J. Algebra 322 (2009), no. 3, 703–721.[MR/doi]
- Jennifer R. Daniel and Aloysius G. Helminck, Algorithms for computations in local symmetric spaces, Comm. Algebra 36 (2008), no. 5, 1758–1788.[MR]
- Claus Fieker and Willem A. de Graaf, Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras, LMS J. Comput. Math. 10 (2007), 271–287 (electronic).[MR]
- University of Georgia VIGRE Algebra Group, On Kostant's theorem for Lie algebra cohomology, Lin, Zongzhu (ed.) et al., Representation Theory. Fourth International Conference on Representation Theory, Lhasa, China, July 16–20, 2007., Contemporary Mathematics, vol. 478, American Mathematical Society (AMS), Providence, RI, 2009, pp. 39–60.
- W. A. de Graaf, Using Cartan subalgebras to calculate nilradicals and Levi subalgebras of Lie algebras, J. Pure Appl. Algebra 139 (1999), no. 1–3, 25–39.[MR]
- Willem A. de Graaf, Classification of solvable Lie algebras, Experiment. Math. 14 (2005), no. 1, 15–25.[MR]
- Willem A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra 309 (2007), no. 2, 640–653.[MR]
- Conrad Kobel, On the classification of solvable Lie algebras of finite dimension containing an abelian ideal of codimension one, Master's Thesis, Halmstad University, 2008.
- L. G. Kovács and Ralph Stöhr, Lie powers of the natural module for GL(2), J. Algebra 229 (2000), no. 2, 435–462.[MR]
- G. I. Lehrer and R. B. Zhang, A Temperley-Lieb analogue for the BMW algebra, preprint (2008), 31 pages.[arXiv]
- Sandro Mattarei and Marina Avitabile, Diamonds of finite type in thin Lie algebras, J. Lie Theory 19 (2009), no. 1, 431–439.
- M. F. Newman and Michael Vaughan-Lee, Engel-4 groups of exponent 5. II. Orders, Proc. London Math. Soc. (3) 79 (1999), no. 2, 283–317.[MR]
- Roman O. Popovych, Vyacheslav M. Boyko, Maryna O. Nesterenko, and Maxim W. Lutfullin, Realizations of real low-dimensional Lie algebras, J. Phys. A 36 (2003), 7337-7360.[arXiv]
- S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311–333.[MR]
- H. Strade, Lie algebras of small dimension, Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 233–265.[MR]
- Michael Vaughan-Lee, Simple Lie algebras of low dimension over GF(2), LMS J. Comput. Math. 9 (2006), 174–192 (electronic).[MR]
- Geordie Williamson, Intersection cohomology complexes on low rank flag varieties, preprint (2007), 17 pages.[arXiv]
- Eliana Zoque, A counterexample to the existence of a Poisson structure on a twisted group algebra, preprint (2006), 4 pages.[arXiv]